
All Colors Shortest Path Problem

Yunus Can Bilge, Doğukan Çağatay, Begüm Genç, Mecit Sarı, Hüseyin Akcan⇤, Cem Evrendilek

Izmir University of Economics 35330, Balçova, Izmir, Turkey

Abstract

All Colors Shortest Path problem defined on an undirected graph aims at finding a shortest, possibly non-simple, path
where every color occurs at least once, assuming that each vertex in the graph is associated with a color known in advance.
To the best of our knowledge, this paper is the first to define and investigate this problem. Even though the problem
is computationally similar to generalized minimum spanning tree, and the generalized traveling salesman problems,
allowing for non-simple paths where a node may be visited multiple times makes All Colors Shortest Path problem novel
and computationally unique. In this paper we prove that All Colors Shortest Path problem is NP-hard, and does not
lend itself to a constant factor approximation. We also propose several heuristic solutions for this problem based on
LP-relaxation, simulated annealing, ant colony optimization, and genetic algorithm, and provide extensive simulations
for a comparative analysis of them. The heuristics presented are not the standard implementations of the well known
heuristic algorithms, but rather sophisticated models tailored for the problem in hand. This fact is acknowledged by the
very promising results reported.

Keywords: NP-hardness, inapproximability, LP-relaxation, heuristic algorithms, simulated annealing, ant colony
optimization, genetic algorithm.

1. Introduction

Given an undirected edge weighted graph where each
vertex has an apriori assigned color, All Colors Shortest
Path (ACSP) problem is defined as a generic problem in
which the aim is to find a shortest possibly non-simple path
that starts from a designated vertex, and visits every color
at least once. As the same node might need to be visited
multiple times, the path is not necessarily simple. This
makes ACSP a novel and unique problem that has never
been studied before to the best of our knowledge. As the
problem is generic enough, it can be applied to a broad
range of possible areas including mobile sensor roaming,
path planning, and item collection.

In this paper, we study ACSP problem, prove that the
problem is NP-hard, and that a constant factor approxi-
mation algorithm cannot exist unless P = NP . An ILP
formulation is developed for ACSP, and elaborate heuristic
solutions to this optimization problem are also provided.
These heuristics are based on LP-relaxation, simulated an-
nealing, ant colony optimization, and genetic algorithm.

⇤Corresponding author. Tel: +90 232 488 8287, Fax: +90 232
488 8475

Email addresses: can.bilge@std.ieu.edu.tr (Yunus Can
Bilge), dogukan.cagatay@std.ieu.edu.tr (Doğukan Çağatay),
begum.genc@std.ieu.edu.tr (Begüm Genç),
mecit.sari@std.ieu.edu.tr (Mecit Sarı),
huseyin.akcan@ieu.edu.tr (Hüseyin Akcan),
cem.evrendilek@ieu.edu.tr (Cem Evrendilek)

An experimental study is carried out to compare them,
and report the results.

The remainder of the paper is organized as follows. In
Section 2, we discuss the related work, and position our
paper with respect to the state of the art. In Section 3, we
formally define the problem, and provide the intractabil-
ity proof along with an inapproximability result. Section 4
presents an ILP formulation for ACSP. In Section 5, we
discuss the heuristic solutions we propose. The experi-
mental results are presented in Section 6, and the paper is
concluded in Section 7.

2. Related Work

ACSP, defined and investigated in this paper, has actu-
ally features that make it look similar to a variety of prob-
lems studied extensively in the literature, each of which,
however, has one or more discrepancies making ACSP
computationally unique. Among these, Generalized Mini-
mum Spanning Tree (GMST) problem introduced in [16]
is probably the most similar to ACSP. Given an undirected
graph partitioned into a number of disjoint clusters, GMST
problem is defined to be the problem of finding the mini-
mum cost spanning tree with exactly one node from every
cluster. This problem has been shown to be NP-hard in
[16], and some inaproximability results are presented in
[17]. Integer Linear Programming (ILP) formulations for
this problem are presented in [5], [19], and [18]. There
exist formulations for also a variant of GMST in [4] and

1

ar
X

iv
:1

50
7.

06
86

5v
1

 [c
s.C

C]
 2

4
Ju

l 2
01

5

[10] where at least one instead of exactly one node from
each cluster is visited. We refer to the latter version as
`-GMST. Even though there are such formulations, ACSP
still di↵ers in the shape of the solution. While ACSP out-
puts a possibly non-simple path, `-GMST returns a tree.
Moreover, it can be easily noted that a minimum spanning
tree returned by `-GMST can only give a rough estimate
for the size of a possibly non-simple shortest path visiting
all the colors even when ACSP is required to return to the
base it starts o↵ as shown in Figure 1. When the nodes
with the same color are perceived as disjoint clusters so as
to interpret this figure as an instance of `-GMST, the tree
spanning nodes 1 through 6 is the optimal solution to it
with cost 5.

1

2 4

11
10 9 8

7

6 5 3 c2

c2

c3 c4 c5
c6

c3 c4 c5 c6

c1

Figure 1: An example graph corresponding to an instance of ACSP.
All the edges have a weight of 1, and the colors assigned to the nodes
are shown next to them. Node 1 is designated as the base. The
shortest path for this instance of ACSP is 1, 2, 7, 8, 9, 10, 11 which
has a length of 6. When the path is constrained to return to the
base, however, the path length of the solution becomes 8.

Another problem seemingly similar to ACSP is Gen-
eralized Traveling Salesman Problem (GTSP) formulated
first in [12]. Given a group of possibly intersecting clusters
of nodes, GTSP tries to find a shortest Hamiltonian tour
with at least one (or exactly one) visit to a node from ev-
ery cluster. An integer linear programming formulation for
GTSP when the distance matrix is asymmetrical is given
in [13]. In [14], it is shown that a given instance of GTSP
can be transformed into an instance of standard TSP. In
[6], GTSP is noted to be NP-hard as standard TSP is a
specialization of GTSP with clusters in the form of single-
ton nodes. It is also surprising to note as [1] demonstrates
that GTSP can be transformed into standard TSP very
e�ciently with the same number of nodes, but with a mod-
ified distance matrix. ACSP di↵ers from also these vari-
ants of GTSP, in that, the nodes may be visited multiple
times, and the path returned need not be a cycle.

3. The Problem Definition

ACSP is modeled as a graph problem. The input to
the problem is an undirected edge weighted graph where
each vertex is assigned a color known in advance. The goal

is then to find the shortest possibly non-simple path that
visits every distinct color at least once in this graph. The
formal definition of the problem is given as:

Definition 3.1. Given an undirected graph G(V,E) with
a color drawn from a set C of colors assigned to each
node, and a non-negative weight associated with each edge,
ACSP is the problem of finding the shortest (possibly non-
simple) path starting from a designated base node s 2 V

such that every color occurs at least once on the path.

The weights w

i,j

where (i, j) 2 E in G correspond to
distances. We will use the words weight, cost, and dis-
tance interchangeably throughout the paper. The cost of
a solution to an instance of ACSP is simply the length of
the path returned.

ACSP can easily be shown to be NP-hard by a trivial
polynomial time reduction from Hamiltonian Path (HP)
problem which is well-known to be NP-complete [7]. Given
an undirected graphG(V,E), HP is defined to be the prob-
lem of deciding whether it has a Hamiltonian path, namely,
a simple path that visits every node in the graph exactly
once.

3.1. NP-hardness of ACSP

Given an instance of HP, it can be transformed to the
corresponding instance of ACSP as follows: Let the graph
in the given HP instance be denoted by G(V,E). A new
graph G

0(V [{s}, E [{(s, v)|v 2 V }) is obtained by
adding to G a new node s, and also the edges from s

to all the original nodes in G. Next, a distinct color from
C = {c1, c2, ..., c|V |+1} is assigned to each and every node
in G

0. The weights associated with all the edges in G

0 are
finally set to one. We can now state the following lemma.

Lemma 3.2. A given instance of HP represented with
G(V,E) has a solution if and only if the corresponding
instance of ACSP obtained through the lines of transfor-
mation just depicted has a solution with length |V |.

Proof. Let us first prove the only if part. When the given
instance of HP has a solution, there must exist a Hamilto-
nian path P in G given by v

⇡(1)v⇡(2)...v⇡(i)v⇡(i+1)...v⇡(|V |)
of length |V |�1. As P is a Hamiltonian path, the permuta-
tion ⇡ of nodes in V is such that the edges (v

⇡(i), v⇡(i+1)) 2
E for all i 2 {1..|V | � 1}. If we let C, and G

0(V 0
, E

0) de-
note the set of |V | + 1 colors, and the transformed graph
respectively in the corresponding instance of ACSP, it is
then possible to construct the path P

0 = sP in G

0 with
total path length |V | where s 2 V is designated as the
base node. This is apparently the shortest path visiting
all distinct colors at least once.

In order to prove the if part, let us assume that we have
a shortest path of length |V | that starts with node s in the
corresponding instance of ACSP. Since the total number
of colors that needs to be visited is |V | + 1, each distinct
color, and hence, the corresponding node occurs exactly
once on this path. The removal of node s readily specifies
a Hamiltonian path in G of the given HP instance.

2

The following theorem can hence be stated now.

Theorem 3.3. ACSP is NP-hard.

Proof. It is a direct consequence of Lemma 3.2.

Having learned about the NP-hardness of ACSP, a pos-
sible next step is to explore its approximability. With this
objective in mind, our attention was drawn to `-GMST
problem having a similar computational structure. While
`-GMST looks for the minimum cost spanning tree, ACSP
seeks out a possibly non-simple path with at least one node
from every cluster provided that the nodes with the same
color are interpreted as disjoint clusters. The following
observation is first made to associate the optimal values of
the respective solutions attained by both problems when
fed with the same input. It is then used to report a result
regarding the approximability of ACSP.

Proposition 3.4. Let I correspond to an input identified
by an undirected edge weighted graph G(V,E), and a func-
tion  : V ! {1, 2, ..., k} mapping the vertices to colors.
For 1  i  k, V

i

= {v 2 V |(v) = i} induce clearly a
set of k disjoint clusters, which in turn allows for a proper
interpretation of I by `-GMST. Then,

opt
`-GMST

(I)  min
j2V

{opt
ACSP

(I
j

)} < 2 ⇤ opt
`-GMST

(I)

holds for all valid instances I, where I

j

is obtained from I

by designating j 2 V as the base node, and opt
A

returns
the cost of the optimal solution to its argument interpreted
as an instance of either one of the two problems as dictated
by the subscript A.

Proof. Let us assume that the first inequality in the propo-
sition does not hold, and, there is an instance I for which
opt

`-GMST

(I) > min
j2V

{opt
ACSP

(I
j

)}. Let us suppose
that s 2 V is a node that minimizes the right-hand side of
this inequality. In that case, the solution to ACSP with
cost opt

ACSP

(I
s

) can be easily reworked, by simply elim-
inating any cycles, and duplicate edges, into a tree T

0. T 0

is clearly a solution to `-GMST for the instance I with
cost less than opt

`-GMST

(I), and hence, contradicting the
assumption.

Let us assume now the latter inequality does not hold.
This, for at least one instance of input I, leaves us with
min

j2V

{opt
ACSP

(I
j

)} � 2 ⇤ opt
`-GMST

(I). Let us also
assume that the tree T

0(V 0
, E

0) is a solution to `-GMST
with cost opt

`-GMST

(I) for instance I. Rooting T 0 at some
s 2 V

0, a possibly non-simple path starting from s could
be constructed visiting all the nodes in it by a depth-first
search. This path, however, forms a solution to ACSP for
instance I

s

with cost strictly less than 2⇤opt
`-GMST

(I) as
no edge gets visited more than twice, and there exists at
least one edge that is visited exactly once given that the
return to the base is not performed upon hitting the last
leaf node in V

0. This, however, contradicts the assump-
tion.

It is shown in [10] that `-GMST, referred to as CLASS
TREE problem in the paper, does not have a constant-
factor polynomial time approximation algorithm (apx) un-
less P = NP .

Theorem 3.5. ACSP does not have a constant-factor
polynomial time approximation algorithm unless P = NP .

Proof. Let us assume, to the contrary, that ACSP has an
apx denoted by apx

ACSP

. Based on this assumption, an
apx for `-GMST can be shown to also exist, and hence a
contradiction, as follows.

Given any valid input I for `-GMST, consisting of an
undirected graph G(V,E) along with disjoint clusters V

i

✓
V with 1  i  k, we denote by I

j

the input for ACSP
obtained from I by designating j 2 V as the base. The
initial assumption with regard to the existence of an apx
suggests by definition

opt
ACSP

(I
j

)  apx
ACSP

(I
j

)  c ⇤ opt
ACSP

(I
j

)

for some constant c > 1, and all valid input I
j

where j 2 V .
Taking the minimum over all j 2 V , we obtain

min
j2V

{opt
ACSP

(Ij)}  min
j2V

{apx
ACSP

(Ij)}  c ⇤min
j2V

{opt
ACSP

(Ij)}.

Combining this result with Proposition 3.4,

opt
`-GMST

(I)  min
j2V

{apx
ACSP

(I
j

)} < 2⇤c⇤opt
`-GMST

(I)

is readily obtained. It should be noted that the mini-
mization over apx

ACSP

(I
j

) involves running the constant-
factor approximation for ACSP separately for each j 2 V ,
and the total time, even though amplified by a factor of
|V |, is still polynomial in the size of a given instance.
Therefore, the last inequality implies, by definition, a 2c-
factor apx for `-GMST. This, however, is a contradiction,
and hence, the proof.

4. ILP Formulation of ACSP

In this section, an Integer Linear Programming formu-
lation of ACSP is presented. To this end, we start by
making the following observation first.

Proposition 4.1. In an optimal solution to any instance
of ACSP, no edge can be visited more than once in any
given direction.

Proof. We assume that p is a possibly non-simple path
with the shortest distance, forming a solution to a given
instance of ACSP. Contrary to the proposition, we proceed
by assuming that an edge (i, j) is traversed more than once
in the direction from node i to node j. Highlighting the
first two occurrences of this edge, then, the path can be
represented as p = s, x, i, j, y, i, j, z where s is the base, and
x, y, and z are sequences of zero or more nodes with edges
in between consecutive nodes. It should be noted that

3

neither x nor y are allowed, by the assumption, to have
any occurrences of i, and j consecutively in this order. We
can, in that case, construct a new path p

0 = s, x, i, y

R

, j, z

with y

R corresponding, in reverse order, to the sequence
of nodes in y. This new path, p0, visiting the same set of
nodes as p, however, is shorter by 2 ⇤ w

i,j

than p. This
contradicts the optimality of p, and hence, proving the
proposition.

Proposition 4.1 allows for an ILP formulation to ACSP
where tracking down whether an edge is visited as part
of an optimal solution in either one of the two possible
directions becomes possible by employing a binary decision
variable. This observation, coupled with the motivation to
come up with a compact ILP model, form the basis of the
transformation to be described next. At the heart of the
transformation is the replacement of each undirected edge
in a given instance of ACSP with two directed edges, and
hence the adoption of a directed graph view as a substitute
in the ILP formulation.

Let us assume that an instance of ACSP is given, as
determined by an undirected edge weighted graphG(V,E),
the designated base vertex s 2 V , and  : V ! C mapping
the vertices V = {1, ..., n} to colors C = {1, ..., k}. Finally,
the weights associated with the edges in G are denoted
by w

i,j

for all unordered pairs (i, j) (or {i, j}) 2 E. It is
therefore implicitly assumed that w

i,j

= w

j,i

for all (i, j) 2
E.

In transforming G(V,E) to a directed graph G

0(V 0
, E

0)
to be used in the ILP formulation, we first introduce two
new nodes numbered 0 as the source, and n+1 as the sink,
setting e↵ectively V

0 = V [{0, n+ 1} in G

0. Besides, the
source, and the sink are both assigned to a new color 0,
extending the color set to C

0 = C[{0}. With the addition
of the new color,  is also augmented accordingly with
(0) = (n+1) = 0. Then, a directed edge (0, s) from the
new source to the base s, as well as directed edges (i, n+1)
to the sink, for all i 2 V in G, are added into G

0 with their
weights set to 0. Lastly, each undirected edge (i, j) 2 E

is replaced by two directed edges (i, j) and (j, i) in G

0

with both of whose weights initialized to the weight of the
original edge. With this final step, the transformation sets
E

0 = {(i, j), (j, i)|(i, j) 2 E} [{(0, s)} [{(i, n+ 1)|i 2 V }
in G

0. Continuing to use the same notation for weights in
G

0, w0,s = 0, and w

i,n+1 = 0 for all i 2 V are added after
the existing w

i,j

= w

j,i

for all unordered pairs (i, j) 2 E.
Any possibly non-simple path, p, starting from the des-

ignated base s, and visiting all colors at least once in G,
corresponds precisely to the path 0, p, n + 1 in G

0, where
nodes 0, and n+1 are the source, and the sink respectively.
In the same way, a possibly non-simple path p = 0, p0, n+1
in G

0, where p

0 is a possibly non-simple path starting at
s, and with length at least one, corresponds to p

0 in G.
As a result, the feasible solutions in G, and G

0 will be in
one-to-one correspondence, as long as the ILP formulation
of ACSP can place a restriction on any feasible solution
in G

0 to start from the source, and to terminate at the

sink. Moreover, these corresponding solutions have both
the same cost. It is hence obvious that a solution to an in-
stance of ACSP on G as given above is optimal if and only
if the corresponding solution on the transformed instance
employing G

0 is also optimal.
The ILP formulation for a given instance of ACSP can

now be stated with reference to the transformation de-
scribed above.

minimize
X

(i,j):(i,j)2E

0

x

i,j

⇤ w
i,j

(1)

subject to

x0,s = 1 (2)
X

(i,j):(i,j)2E

0

^ (j)=c

x

i,j

� 1 , 8c 2 C

0 (3)

X

j:(j,i)2E

0

x

j,i

=
X

j:(i,j)2E

0

x

i,j

, 8i 2 V (4)

y

j

� x

i,j

, 8(i, j) 2 E

0 (5)
X

i:(i,j)2E

0

x

i,j

� y

j

, 8j 2 V

0 \ {0} (6)

X

j:(j,i)2E

0

f

j,i

= y

i

+
X

j:(i,j)2E

0

f

i,j

, 8i 2 V (7)

x

i,j

 f

i,j

 (n+ 1) ⇤ x
i,j

, 8(i, j) 2 E

0 (8)

x

i,j

2 {0, 1} , 8(i, j) 2 E

0 (9)

y

i

2 {0, 1} , 8i 2 V

0 \ {0} (10)

f

i,j

2 {0, 1, ..., n+ 1} , 8(i, j) 2 E

0 (11)

The objective in this formulation is to minimize the sum
of the weights over all the directed edges that have been
visited as shown in (1). The binary variable x

i,j

is set to 1
when the directed edge (i, j) is visited, and to 0 otherwise.
It should be noted that all the edges involving the source,
and the sink, introduced later in the transformation, with
weight zero have no e↵ect on the objective. Constraint (2)
ensures that the edge from the source to the base is always
a part of any feasible solution. Therefore, any feasible path
always starts from the source, and then moves straight to
the base. Constraint (3) demands for each distinct color
that the number of the visited edges directed at the nodes
with this same color is at least one. As a result, every
distinct color gets visited at least once. As the constraint
must also hold for color 0, any feasible path is guaranteed
to terminate at the sink. Constraint (4) is used to make
sure that the number of the visited edges that enter into
any node i in G is equal to the number of the visited edges
that leave it. This obviously holds for all the nodes, but
the source, and the sink in G

0. The main ingredient in en-
forcing the shape of the solution to a possibly non-simple
path is this constraint. Constraints (5), and (6) establish
collectively the rules associated with the variables y

j

for
all j 2 V

0 \ {0}. The binary decision variable y
j

is set to 1
if and only if node j has been visited in a feasible solution.

4

Constraint (5) simply asserts that visiting an edge (i, j)
is an implication of visiting node j while Constraint (6)
predicates the converse. Constraint (7), along with (8),
is used to eliminate any possible sub-tours, and to ensure
connectedness to the base. Constraint (7) employs non-
negative integer valued flow variables, denoted by f

i,j

for
all edges (i, j) 2 E

0. It enforces the total flow into a vis-
ited node to be equal to one greater than the total flow
out of that node. In formulating this constraint, it is as-
sumed that the source supplies a limited amount of flow
to distribute to those nodes that are visited in any feasible
solution. Hence, each node visited consumes a unit flow.
Constraint (8) is in charge of regulating the flow values. A
flow is associated with an edge if and only if that edge is
part of a solution. As the flow is conserved at all the nodes
in the original graph, the base node s is no exception. Cou-
pled with the fact that each node visited consumes a unit
flow, the edge (0, s) should carry as many unit flows as
there are nodes to visit. Excluding the source leaves us
with a maximum of n+ 1 nodes, and hence, the factor in
(8). Finally, the constraints (9), (10), and (11) are the in-
tegrality constraints for the decision variables x

i,j

, y
i

, and
f

i,j

respectively.

5. Heuristic solutions

In this section, we describe our heuristic solutions to
the intractable ACSP problem. Section 5.1 explains sev-
eral heuristic solutions based on LP-relaxation. Simulated
annealing, ant colony optimization, and genetic algorithm
based heuristic solutions to ACSP are presented later in
sections 5.2, 5.3, and 5.4 respectively.

5.1. LP Relaxation

The given ILP formulation, (1) through (11), is relaxed
to an LP by replacing the integrality constraints (9), (10),
and (11) with

0  x

i,j

 1 , 8(i, j) 2 E

0 (90)

0  y

i

 1 , 8i 2 V

0 \ {0} (100)

0  f

i,j

 n+ 1 , 8(i, j) 2 E

0 (110)

respectively. Now, the decision variables can take on real
values.

We propose several heuristics based on rounding the so-
lutions to this LP relaxation. Having learned from The-
orem 3.5 that a constant-factor approximation does not
exist for ACSP, we explore strategies based on iterative
rounding, rather than typical one-shot rounding.

The first heuristic, called LP
x

ACSP, after obtaining the
optimal solution to the LP relaxation, finds the maximum
value strictly less than one among all x

i,j

2 E

0. The set of
all indexes for which this maximum is attained is denoted
by µ (i.e., µ = argmax

((i,j)2E

0)^(0<xi,j<1)
x

i,j

). Next, the LP re-

laxation formulation at hand is augmented with the addi-
tional constraints in the form of x

i,j

= 1 for all (i, j) 2 µ.

Finally, a subsequent call to LP for the extended formula-
tion is issued. Hence, the job, in this subsequent call, be-
comes finding the shortest possibly non-simple path that
fulfills not only the previous set of constraints but also
passes through every additional edge explicitly dictated
by the added constraints. This process is repeated until
no fractional values to process are left, and hence µ = ;.

The other two heuristics, called LP
f

ACSP, and
LP

f/x

ACSP use exactly the same strategy described
above except for how µ is computed before a call
to LP. While LP

f

ACSP relies on the flow variables
(µ = argmax

((i,j)2E

0)^(0<xi,j<1)
f

i,j

) in deciding which addi-

tional x

i,j

values to round before the next iteration,
LP

f/x

ACSP bases its decision on the ratios of f

i,j

/x

i,j

(µ = argmax
((i,j)2E

0)^(0<xi,j<1)

fi,j

xi,j
).

5.2. Simulated Annealing

We develop another heuristic solution for ACSP, based
on Simulated Annealing (SA) [11]. This new heuristic,
called SA-ACSP, can be described in three primary parts:

(1) Choosing an initial random path: The general
outline of the algorithm for SA-ACSP is given in Figure 2.
The algorithm starts with a random possibly non-simple
path that visits every color at least once. Such a path
is constructed by randomly extending an existing path,
originating from the base, until it visits every color at least
once. This process is performed only once, in line 7, at the
start of each iteration in the while loop in lines 6 through
29.

(2) Generating neighbors: We generate a neighbor
by removing the last node in the current state, and then,
adding to a random position in the path the closest node
with the same color as the removed node.

(3) Selecting the best path: Starting from an initial
temperature, denoted by T in the algorithm in Figure 2,
the system is cooled down until a frozen state is reached,
where the temperature is close to zero. Cooling down is
done by decreasing the temperature slightly at each iter-
ation as seen in line 28. The symbol R there corresponds
to the cooling rate. The energy of each state is defined by
the cost of the path selected at that stage. As the tem-
perature approaches to that of a frozen state, SA-ACSP
keeps exploring the neighbors. At each iteration, a neigh-
bor solution is discovered in the search space, and chosen
probabilistically according to Metropolis Criterion [15],

p(�E) = e

��E/kT

,

where k is Boltzmann’s constant, T is the temperature,
and �E is the di↵erence between the energies of the cur-
rent, and the neighbor solutions. If the total energy de-
creases, the new state is assumed right away. Otherwise,
the system chooses to go to the new state according to the
probability that is produced by Metropolis criterion.

5

1: procedure Sa-Acsp

2: �E 0;
3: bestCost 1;
4: T SetInitialTemperature();
5: iterationCount noOfNodes ⇤ noOfColors/5;
6: while T � freezingTemp do

7: localBestPath findARandomPath();
8: localBestCost costOf(localBestPath);
9: for i 0 to iterationCount do

10: nextPath findANeighbourPath();
11: nextCost costOf(nextPath);
12: �E nextCost� localBestCost;
13: if �E < 0 then

14: localBestPath nextPath;
15: localBestCost nextCost;
16: else

17: r Random(0, 1);
18: if r < e��E/T

then

19: localBestPath nextPath;
20: localBestCost nextCost;
21: end if

22: end if

23: end for

24: if localBestCost < bestCost then
25: bestPath localBestPath;
26: bestCost localBestCost;
27: end if

28: T T ⇤R;
29: end while

30: return bestCost ;

31: end procedure

Figure 2: SA-ACSP : Heuristic based on simulated annealing.

5.3. Ant Colony Optimization

In this section, we present the details of how Ant Colony
Optimization (ACO) [2, 3] is applied to obtain ACO-
ACSP, another heuristic solution, to ACSP problem.

In ACSP, each color needs to be visited at least once.
Therefore, the ant colony optimization algorithm is imple-
mented to visit multiple food types, where each food type
corresponds to a distinct color. In other words, when an
ant leaves the nest, its search is not over until it finds a
path that passes over every food type. The base node is
chosen as the nest of all the ants, and at each iteration,
the entire colony of ants is released from this nest to the
graph.

The random movements of the ants, while visiting a
node, are governed by an edge selection procedure. De-
pending on whether there is any trace of pheromone on an
incident edge, the ants compute two types of edge selection
probabilities. In the first one, when there is no pheromone
on any incident edge, the ants make the selection based on
the edge costs (or distances) using the following formula,

prob

i,j

=
c0 � w

i,jP
k:(i,k)2E

(c0 � w

i,k

)
,

where prob
i,j

is the selection probability of edge (i, j) 2 E,
and c0 is a constant. The second case occurs when the

pheromone level on at least one incident edge is not zero.
In this case, the edge selection probability calculation is
performed, based on the pheromone levels, as:

prob

i,j

=
(D

i,j

)� ⇤
P

k2C

(Ph

i,j

(k))↵
P

q:(i,q)2E

⇥
(D

i,q

)� ⇤
P

k2C

(Ph

i,q

(k))↵
⇤
,

where Ph

i,j

(k) is the pheromone level on edge (i, j) 2 E

associated with color k 2 C, ↵, and � are user defined
parameters with 0  ↵  �  1, and the desirability D

i,j

of edge (i, j) 2 E is defined to be inversely proportional to
the edge’s cost as D

i,j

= 1/w
i,j

.
Pheromone level updates are carried out in two di↵erent

ways, namely, the local, and the global updates. The local
updates are applied to all the edges selected because each
ant secretes pheromone as it moves on the edges. More-
over, the pheromones are not stored only on the edges.
Ants also have some pheromones within themselves, and
their levels drop while they are secreted by the ants during
their traversal. Therefore, the local updates are performed
on the edges as well as the ants selecting them. While the
local update to the pheromone level corresponding to color
k 2 C, after the selection of edge (i, j) 2 E by ant t, is
performed by

Ph

i,j

(k) = (1� �) ⇤ Ph

i,j

(k) + � ⇤ Ph

t

(k),

the level of the pheromone associated with color k stored
on ant t becomes the subject of the local update

Ph

t

(k) = Ph

t

(k)� � ⇤ Ph

t

(k),

where � is a user defined evaporation parameter such that
0  �  1. It should be noted here that the same notation
has been employed to keep track of the pheromone levels
on both the edges, and the ants. However, the levels of
the pheromones stored on ants are tracked with a single
subscripted index as opposed to two for the edges.

The second type of the update to pheromone levels
comes under the title of the global update. The global
pheromone update is also known as o↵-line pheromone
update. It is applied, at the end of each iteration, only
to the edges that are on the best path found so far. The
pheromone level for each color k 2 C on each such edge is
updated using the following formula

Ph

i,j

(k) = (1� �) ⇤ Ph

i,j

(k) + � ⇤ 1

cost(bestPath)

where cost(bestPath) denotes the total cost of traversing
the edges associated with the best, possibly non-simple,
path found so far.

The pseudo-code of ACO-ACSP heuristic algorithm, re-
flecting the general anatomy of ant colony optimization as
applied to ACSP is presented in Figure 3.

5.4. Genetic Algorithm

The Genetic Algorithm (GA) [9] has five main steps:
initialization, fitness, selection, crossover, and mutation.

6

1: procedure selectEdge(Ant ant)

2: if ant.isDone OR ant.isDiscarded then

3: ant.pheromoneUpdate false;
4: else

5: incidentEdges findAvailableEdges(ant);
6: if sizeOf(incidentEdges) = 0 then

7: ant.isDiscarded true;
8: else

9: ant.pheromoneUpdate true;
10: sum calcProbUsingPheromones();
11: if sum = 0 then

12: calcProbUsingDistances();
13: end if

14: updateAntToPickEdge();
15: end if

16: end if

17: end procedure

1: procedure Aco-Acsp()

2: bestAnt ;;
3: for j 0 to iterationCount do
4: colony = createAnts(colonySize);
5: antsDoneTour 0;
6: while antsDoneTour < colonySize do

7: for all ant in colony do

8: selectEdge(ant);
9: updateLastSelectedEdge();

10: if ant.hasAllColors then

11: ant.isDone true;
12: ++antsDoneTour ;
13: end if

14: end for

15: end while

16: tempAnt findBestAnt();
17: updatePheromoneOnBestPath(tempAnt.path);
18: if tempAnt.cost  bestAnt.cost then
19: bestAnt tempAnt;
20: end if

21: end for

22: return bestAnt.cost ;

23: end procedure

Figure 3: ACO-ACSP : Heuristic based on ant colony optimization.

In this section, we develop GA-ACSP which is another
heuristic solution to ACSP based on GA. The algorithm
is presented in Figure 4.

During the initialization step, a pool of chromosomes,
called population, is generated. We encode the chromo-
somes in such a way that each chromosome is represented
by an ordered list of vertices, corresponding to a solution
to a given ACSP instance. As the path is not necessar-
ily a simple path, each vertex may appear multiple times
on a chromosome. Initially, the population is filled with a
certain number of randomly created, possibly non-simple,
paths, each of which visits all the distinct colors at least
once.

In the next step, the fitness values are calculated for
each chromosome in the population. The fitness value of
a chromosome, in GA-ACSP, is simply taken as the total

1: procedure Ga-Acsp

2: population ;;
3: for i 0 to populationSize do

4: chrm = createRandomChromosome();
5: ensureConnectivity(chrm);
6: population.add(chrm);
7: end for

8: for i 0 to iterationCount do
9: candidates rouletteWheelSelection(population);

10: children crossOver(candidates);
11: for all child in children do

12: r random(0, 1);
13: if r < mutationProbability then

14: mutate(child);
15: end if

16: completeMissingColors(child);
17: ensureConnectivity(child);
18: population.add(child);
19: end for

20: w2c find2chromosomesWithLowestFitness();
21: population.remove(w2c);
22: end for

23: return costOfBestChromosome;

24: end procedure

Figure 4: GA-ACSP : Heuristic based on genetic algorithm.

distance traveled down the corresponding possibly non-
simple path.

In the selection step, two candidate chromosomes are
selected from the population for crossover. The selection
of the candidates are performed using the roulette wheel
selection algorithm [8], in which the chromosomes with
higher fitness values have higher chances to be selected.

In performing a crossover, two random positions p1, and
p2 with a common vertex are initially figured out in the
first, and the second candidate chromosomes respectively.
The portions beyond p1, and p2 are then swapped between
the candidates to produce two new children. In case the
candidates do not have a common vertex, two more can-
didates for crossover are selected until a vertex common
to both can be found. In the end, two new, possibly non
simple, paths are generated. It should be noted, however,
that these new paths are not guaranteed to visit all the
colors. Therefore, as soon as the crossover, and the muta-
tion steps are over, we examine the paths to find a list of
the missing colors on each, and then, modify the paths ac-
cordingly so that when the process is over, each of the two
new chromosomes represents also a non-simple path that
visits each color at least once. In modifying the paths,
we follow a greedy policy, and append to the tail of the
chromosome, at each iteration, the shortest path from the
tail to the closest vertex with a color not visited yet. This
helps keeping the path lengths as short as possible.

The last step in GA-ACSP is the mutation. It is car-
ried out by simply replacing two random vertices in the
chromosome, and rearranging the path to ensure that it
remains connected. In order to connect non-neighbor ver-

7

tices in the chromosome, the shortest path between those
vertices is inserted into the chromosome.

After the crossover, and the mutation steps, the child
chromosomes need to be verified to correctly represent a
possibly non-simple path. After any possible problems re-
garding missing colors, and disconnectivity are dealt with,
as described above, there is still some more work to do.
First, the redundant segment at the tail part of the chro-
mosome should be cropped if all the colors have already
been seen before the beginning of that segment. Lastly,
the property that no edge can be visited more than once
in any direction in an optimal solution can be violated as
a result of the crossover, and the mutation operations. In
such a case, the property should be restored, as highlighted
in the proof to Proposition 4.1.

Once the two newly formed child chromosomes are
added to the population, the two chromosomes that have
the worst fitness values are removed from the population.

6. Experiments

In this section, we present the results of our experi-
ments for the proposed heuristic algorithms. We refer to
LP

x

ACSP, LP
f

ACSP, and LP
f/x

ACSP under the head-
ing of LP relaxation based algorithms whereas SA-ACSP,
ACO-ACSP, and GA-ACSP are treated under the cate-
gory of metaheuristic algorithms. We implemented the
metaheuristic algorithms in C++, and used CPLEX for
ILP, and LP relaxation based heuristics. All tests are per-
formed on computers that have AMD Phenom(tm) II X4
810 2.67 GHz CPU, and 2 Gb 400 MHz DDR2 RAM run-
ning on the 32-bit operating system Ubuntu 10.04. We
conducted the experiments on randomly generated graphs
with varying number of nodes, and colors as listed in Table
1, with an average node degree of 6, uniform color distri-
bution, and an average edge weight of 10. The simulations
are conducted 10 times for each graph type, and only the
average, and the minimum cost values are reported.

Graph Name Number of Nodes Number of Colors

n50-c10 50 10
n50-c20 50 20
n50-c25 50 25
n100-c25 100 25
n100-c40 100 40
n100-c50 100 50
n200-c50 200 50
n200-c75 200 75

Table 1: The number of nodes, and colors for the randomly generated
graph types used in the experiments.

In the sections to follow, the experimental results are re-
ported, first, separately for each metaheuristic algorithm.
In each of these sections, we conduct various experiments
for parameter tuning, namely, to find the optimal values of

individual parameters specific to a metaheuristic. Finally,
in Section 6.4, an overall comparison is presented to assess
the relative performance of all the heuristics proposed, us-
ing the fine-tuned parameters.

6.1. SA-ACSP: Parameter Tuning for SA

In SA, the two parameters essential to performance are
the best cooling rate with respect to time and cost, and
the best temperature to be used with the best cooling rate.
All the other parameters for SA-ACSP are kept unchanged
during these tests.

The cooling rate is used to determine the amount of
decrease in the temperature value at each iteration. We
tested SA-ACSP with various cooling rate values as pre-
sented in Figures 5, 6, and 7. The temperature value for
these tests is set at 100. Looking at Figures 5, and 6,
we can observe that the cost slightly decreases with the
increasing values of cooling rate parameter. In Figure 7,
however, we also observe that the time increases dramati-
cally for the cooling rate values larger than 0.999. There-
fore, based on the results of these experiments, we selected
the best cooling rate parameter to be 0.999.

 0

 200

 400

 600

 800

 1000

 0.9 0.92 0.94 0.96 0.98 1

C
o

st

Cooling Rate

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 5: Minimum cost for various cooling rate values in SA-ACSP.

The temperature value in SA-ACSP controls the prob-
ability of choosing worse paths in order to not get stuck
at a local minimum. We conducted simulations with vari-
ous temperature values on all graph types, and present the
cost, and the CPU times in Figures 8, 9, and 10. Based
on the results in these figures, we selected 1000 as the best
temperature value.

6.2. ACO-ACSP: Parameter Tuning for ACO

The behavior of ACO-ACSP depends on four separate
parameters. In order to find the optimal value for each
parameter, we conducted a series of experiments for each
individual parameter. In each experiment, all the other
parameters are kept constant, and only the specified pa-
rameters are tested for various values, and the cost, and

8

 0

 200

 400

 600

 800

 1000

 0.9 0.92 0.94 0.96 0.98 1

C
o

st

Cooling Rate

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 6: Average cost for various cooling rate values in SA-ACSP.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.9 0.92 0.94 0.96 0.98 1

T
im

e

Cooling Rate

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75
n50-c10
n50-c20
n50-c25

Figure 7: CPU time for calculating the average cost values for various
cooling rate values in SA-ACSP.

the runtime values observed are recorded. The experi-
ments conducted can be categorized into alpha-beta tests,
colony size tests, and probability tests.

Alpha, and beta values are the two parameters used
for edge selection in ACO-ACSP. The parameter alpha
denotes the importance of the pheromone levels on the
edges while calculating probabilities. Beta, on the other
hand, represents the importance of the edge weights. The
experiments are designed to decide on the combination of
alpha, and beta values that gives us the best result in
terms of the cost, and the CPU time. The results of the
experiments are presented in Figures 11, 12, and 13. These
figures report the results with respect to the CPU time,
the average cost, and the minimum cost, and based on the
results, we selected the alpha value as 0.4, and beta value
as 0.5.

In ACO-ACSP, the colony size represents the number
of active ants deployed at each iteration of the algorithm.
Having a larger colony increases the chances for finding
solutions closer to the optimal, however, at the cost of

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000

C
o

st

Temperature

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 8: Minimum cost for various temperature values in SA-ACSP.

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000

C
o

st

Temperature

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 9: Average cost for various temperature values in SA-ACSP.

increasing the overall runtime. Therefore, we test ACO-
ACSP for various colony sizes to decide on the optimal
colony size that can achieve a minimal cost solution in an
acceptable time period. The results of the experiments are
presented in Figures 14, 15, and 16. As we can clearly see
from the figures, the runtime increases linearly in the size
of the colony, and the cost decreases only slightly for colony
sizes larger than 200. Based on these results, we selected
the colony size as 200 in the rest of the experiments.

The edge selection probabilities in ACO-ACSP are cal-
culated based on either the level of pheromones on the
edge or the edge weight itself. The results of the experi-
ments conducted to find the optimal probability value is
presented in Figures 17, 18, and 19. A close inspection of
these figures reveal that both the cost, and the runtime
increase for probability values larger than 0.95. Based
on this observation, therefore, we selected the probability
value as 0.9 to be used throughout the rest of the experi-
ments.

9

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000

T
im

e

Temperature

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 10: CPU time for calculating average cost for various tem-
perature values in SA-ACSP.

 0
 2

 4
 6

 8
 10

 12
Alpha 0

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

Beta

 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

Cost

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

Figure 11: Minimum cost for various combinations of alpha, and
beta values in ACO-ACSP.

 0
 2

 4
 6

 8
 10

 12
Alpha 0

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

Beta

 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

Cost

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

Figure 12: Average cost for various combinations of alpha, and beta
values in ACO-ACSP.

 0
 2

 4
 6

 8
 10

 12
Alpha 0

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

Beta

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Figure 13: CPU time for calculating the average cost for various
combinations of alpha, and beta values in ACO-ACSP.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400

C
o

st

Colony Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 14: Minimum cost for various colony size values in ACO-
ACSP.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400

C
o

st

Colony Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 15: Average cost for various colony size values in ACO-ACSP.

6.3. GA-ACSP: Parameter Tuning for GA
In GA-ACSP, the parameters investigated are the mu-

tation probability, the population size, and the iteration

10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

T
im

e

Colony Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 16: CPU time for calculating the average cost for various
colony sizes in ACO-ACSP.

 0

 200

 400

 600

 800

 1000

 1200

 0.9 0.92 0.94 0.96 0.98 1

C
o

st

Probability

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75
n50-c10
n50-c20
n50-c25

Figure 17: Minimum cost for various edge selection probability values
in ACO-ACSP.

 0

 200

 400

 600

 800

 1000

 1200

 0.9 0.92 0.94 0.96 0.98 1

C
o

st

Probability

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75
n50-c10
n50-c20
n50-c25

Figure 18: Average cost for various edge selection probability values
in ACO-ACSP.

size. The results of the tests on the mutation probability

 0

 20

 40

 60

 80

 100

 120

 140

 0.9 0.92 0.94 0.96 0.98 1

T
im

e

Probability

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 19: CPU time for calculating the average cost for various edge
selection probability values in ACO-ACSP.

are presented in Figures 20, 21, and 22. It can be seen
from the figures that the changes on the mutation prob-
ability do not a↵ect the cost dramatically. Therefore, to
prevent over-randomization of chromosomes, we selected
for the mutation probability a value as low as 0.1.

 0

 100

 200

 300

 400

 500

 600

 700

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

st

Mutation Probability

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 20: Minimum cost for various mutation probability values in
GA-ACSP.

We also conducted experiments to find the optimal iter-
ation size. The results of the experiments are presented in
Figures 23, 24, and 25. Based on the results, we decided
to select the iteration size as 6000, as it provides the best
trade-o↵ between the cost, and the runtime.

We also experimented on various population sizes to find
the best population size for GA-ACSP. The results of the
experiments are presented in Figures 26, 27, and 28. Based
on the results, the population size is selected as 600 as both
the running time, and the cost at this value of population
size are lower than they are at larger population sizes.

11

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

st

Mutation Probability

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 21: Average cost for various mutation probability values in
GA-ACSP.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e

Mutation Probability

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 22: CPU time for calculating the average cost for various
mutation probability values in GA-ACSP.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
os

t

Iteration Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 23: Minimum cost for various iteration sizes in GA-ACSP.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
o

s
t

Iteration Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 24: Average cost for various iteration sizes in GA-ACSP.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e

Iteration Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75
n50-c10
n50-c20
n50-c25

Figure 25: CPU time for calculating the average cost for various
iteration sizes in GA-ACSP.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
os

t

Population Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 26: Minimum cost for various population sizes in GA-ACSP.

6.4. Comparing the Heuristic Algorithms

In this section, we first present the performance of
the LP relaxation based heuristics, namely LP

x

ACSP,

12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

st

Population Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 27: Average cost for various population sizes in GA-ACSP.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e

Population Size

n100-c25
n100-c40
n100-c50
n200-c50
n200-c75

n50-c10
n50-c20
n50-c25

Figure 28: CPU time for calculating the average cost for various
population sizes in GA-ACSP.

LP
f

ACSP, and LP
f/x

ACSP in Figure 29. The results are
reported in proportion to the optimal values obtained via
the ILP formulation. Next, we compare the performance
of the metaheuristic algorithms, SA-ACSP, ACO-ACSP,
and GA-ACSP. The results for them are presented, again
in proportion to the optimal values, in Figure 30. For each
individual metaheuristic algorithm, in these tests, the best
parameter values discovered are used. We use randomly
generated graphs for the types presented in Table 1.

Based on the experimental results, it is observed that
the total path length returned by SA-ACSP is better than
that returned by ACO-ACSP for medium-sized graphs.
In contrast, ACO-ACSP finds lower cost paths compared
to SA-ACSP for larger graphs. The performance of GA-
ACSP, in terms of solution quality, is similar to the other
two metaheuristics. It has, however, a remarkable advan-
tage in terms of time spent over the other two on all types
of graphs.

7. Conclusion

In this paper, a novel, and generic problem, All Col-
ors Shortest Path (ACSP) problem, has been formulated,
and computationally explored. ACSP has been shown to
be NP-hard, and also inapproximable within a constant
factor of the optimal. An ILP formulation has been devel-
oped for ACSP. Various heuristic solutions have then been
devised, based on iterative rounding applied to an LP re-
laxation of the ILP formulation. Moreover, three di↵erent
metaheuristic solutions based on simulated annealing, ant
colony optimization, and genetic algorithm have been pro-
posed. Through extensive simulations, an experimental
evaluation of all the heuristics have also been reported.

The study of the computational characteristics of ACSP
when the underlying graph is restricted to be a tree is a
future work. Investigation of an approximation bound is
left as an interesting open problem.

8. Acknowledgement

We would like to thank Mehmet Berkehan Akçay for the
experiments regarding ILP.

References

[1] A. Behzad and M. Modarres. New e�cient transformation of
the generalized traveling salesman problem into traveling sales-
man problem. In 15th International Conference of Systems
Engineering, Las Vegas, USA, 2002.

[2] M. Dorigo and L. M. Gambardella. Ant colony system: A co-
operative learning approach to the traveling salesman problem.
IEEE Transactions on Evolutionary Computation, 1(1):53–66,
1997.

[3] M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Opti-
mization by a Colony of Cooperating Agents. IEEE Transac-
tions on Systems, Man, and Cybernetics Part B:Cybernetics,
26(1):29–41, 1996.

[4] M. Dror, M. Haouari, and J. Chaouachi. Generalized spanning
trees. European Journal of Operational Research, 120(3):583–
592, 2000.

[5] C. Feremans, M. Labbe, and G. Laporte. A comparative anal-
ysis of several formulations for the generalized minimum span-
ning tree problem. Networks, 39(1):29–34, 2002.

[6] M. Fischetti, J. J. S. Gonzalez, and P. Toth. A branch-and-
cut algorithm for the symmetric generalized traveling salesman
problem. Operations Research, 45(3):378–394, 1997.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[8] D. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, 1989.

[9] J. H. Holland. Adaptation in Natural and Artificial Systems.
The University of Michigan Press, Ann Arbor, 1975.

[10] E. Ihler, G. Reich, and P. Widmayer. Class steiner trees and vlsi-
design. Discrete Applied Mathematics, 90(13):173–194, 1999.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, 1983.

[12] H. Labordere. The record balancing problem: A dynamic pro-
gramming solution of a generalized travelling salesman problem.
RAIRO Operations Research B2, pages 43–49, 1969.

[13] G. Laporte, H. Mercure, and Y. Nobert. Generalized travelling
salesman problem through n sets of nodes: the asymmetrical
case. Discrete Applied Mathematics, 18(2):185–197, 1987.

13

LP
x

ACSP LP
f

ACSP LP
f/x

ACSP

Graph ILP x Time f Time f/x Time

Name

n50-c10 40 3.15 1.763 1.15 1.03 2.075 0.967

n50-c20 101 1.8614 2.543 1.1584 1.357 1.1881 1.201

n50-c25 132 1.9015 2.761 1.3182 1.794 1.3636 1.186

n100-c25 138 2.1449 5.803 1.2101 3.136 1.5145 3.37

n100-c40 220 1.9955 8.986 1.3227 4.181 1.4591 4.056

n100-c50 233 1.8112 8.686 1.1631 4.014 1.1202 3.526

n200-c50 223 2.3498 40.872 1.3946 23.452 1.6906 23.556

n200-c75 399 1.9599 51.767 1.3258 30.716 1.4837 23.166

Figure 29: Comparison of ILP, LP
x

ACSP, LP
f

ACSP, and LP
f/x

ACSP.

SA-ACSP ACO-ACSP GA-ACSP

Graph Average Minimum Average Average Minimum Average Average Minimum Average

Name Cost Cost Time Cost Cost Time Cost Cost Time

n50-c10 1 1 33.4153 1.0575 1 2.32152 1.0725 1.05 0.422245

n50-c20 1.1386 1.1089 47.0029 1.1911 1.1683 8.15708 1.2267 1.1188 0.546315

n50-c25 1.1720 1.1212 55.6508 1.1758 1.1212 13.8652 1.3303 1.2197 0.716446

n100-c25 1.2319 1.1812 203.28 1.2572 1.1739 14.0686 1.2167 1.1521 0.957005

n100-c40 1.3264 1.2182 260.757 1.3345 1.2773 38.0068 1.5386 1.4045 1.30289

n100-c50 1.3914 1.3176 334.878 1.4039 1.2918 69.8665 1.5588 1.4464 2.30258

n200-c50 1.5143 1.4619 1052.87 1.4404 1.3901 63.4437 1.5771 1.4484 2.9976

n200-c75 1.62314 1.5539 1490.63 1.5 1.4637 169.171 1.7170 1.5840 5.69891

Figure 30: Comparison of SA-ACSP, ACO-ACSP, and GA-ACSP with their best parameters.

[14] Y.-N. Lien, E. Ma, and B. W.-S. Wah. Transformation of
the generalized traveling-salesman problem into the standard
traveling-salesman problem. Information Sciences, 74(1-2):177–
189, 1993.

[15] N. Metropolis, A. W. Rosenbluth, M. Rosenbluth, A. H. Teller,
and E. Teller. Equation of state calculations by fast computing
machines. J. Chem. Phys., 21:1087–1092, 1953.

[16] Y.-S. Myung, C.-H. Lee, and D.-W. Tcha. On the general-
ized minimum spanning tree problem. Networks, 26(4):231–241,
1995.

[17] P. C. Pop. New models of the generalized minimum spanning
tree problem. Journal of Mathematical Modelling and Algo-
rithms, 3(2):153–166, 2004.

[18] P. C. Pop, W. Kern, and G. Still. A new relaxation method
for the generalized minimum spanning tree problem. European
Journal of Operational Research, 170(3):900–908, 2006.

[19] P. C. Pop, G. Still, and W. Kern. An approximation algo-
rithm for the generalized minimum spanning tree problem with
bounded cluster size. In H. Broersma, M. Johnson, and S. Szei-
der, editors, ACiD, volume 4 of Texts in Algorithmics, pages
115–121. King’s College, London, 2005.

14

