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Complexity of Energy Efficient Localization with the Aid of a Mobile Beacon

Hüseyin Akcan, Cem Evrendilek

Abstract—Localization is an essential service in wireless sensor
networks. Trilateration is a commonly used solution to range
based localization for providing such services. It might be,
however, impossible to localize the entire network at once using
trilateration due to low connectivity on sparse deployments. In
such scenarios, a mobile beacon with a known position is used
to move among and locate the nodes with low connectivity to
aid trilateration. Given a network graph, finding a minimum
energy route traveled by the mobile beacon is a key problem
in many real world applications. We prove in this paper that
this problem called Mobile Assisted Trilateration Based Energy
Optimum Localization is NP-hard. To the best of our knowledge,
this is the first such result in an attempt to computationally
classify this important problem. We also provide a compact
integer linear programming formulation for the problem.

Index Terms—Localization, trilateration, NP-hardness, integer
linear programming.

I. INTRODUCTION

Given a network graph G(V, E), range based network
localization problem in 2D is to determine the locations of
all the nodes v ∈ V in IR2 using the distances δi, j available
between the nodes {i, j} ∈ E [2]. The problem is shown to be
strongly NP-hard in k-space for all k > 0 in [13]. Aspnes et
al. [3] proved that localization in Unit Disk Graphs (UDG)
is also NP-hard. As Wireless Sensor Networks (W SN) are
typically modeled using UDGs, the complexity result has a
direct implication for such networks.

A well known polynomial time solution to the range based
network localization problem is the trilateration algorithm,
assuming that the network graph has a trilateration ordering
[1], [6]. A trilateration ordering is defined as a sequence
starting with a seed of three nodes with known positions and
an ordering on the rest of the nodes such that each node has
three edges to the nodes earlier in the sequence. Given the
result that 6-connectivity is sufficient for global rigidity, if the
wireless range of each node is large enough as suggested in [6]
then, with high probability, the network graph is localizable
in linear time. However, on sparse graphs, trilateration can be
carried out only partially due to the insufficient connectivity
among neighbors. One possible solution for sparse graphs is
then to use a mobile beacon as an external agent to locate
the individual nodes with low connectivity, and help resume
trilateration for the rest of the graph [9], [10], [11]. A recent
survey paper [8] reports in detail a considerable body of
research studying the class of problems in which one or more
mobile beacons are used to assist localization.

We state first the assumptions made before a formal def-
inition of the Mobile Assisted Trilateration Based Energy
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Optimum Localization (MATBOL) problem can be given. It
is assumed that the wireless nodes to be localized form a
connected undirected graph. Each edge in such a graph simply
indicates that the corresponding pair of nodes is within range
of one another, and the weight associated with the edge is
a measure of the distance. A special node, called the mobile
beacon, has the ability to move. It can travel along the edges
from one node to another. Both the static nodes and the
mobile beacon are equipped with wireless radios to measure
pairwise distances within wireless range, called ranging. Any
extra equipment on the mobile might have an effect on the
total distance and the pattern traveled in order to localize the
entire network. In the current formulation of the problem in
this paper, the mobile beacon is assumed to have no extra
hardware to support any additional functionality other than
the ones required to do ranging and to move (in any direction
relative to the local coordinate system of the mobile). It should
also be noted that the coordinates of the nodes localized are all
relative to the locations of the first three nodes visited by the
mobile as dictated by the trilateration ordering. Following this
model, once the mobile is deployed right next to some node
designated as the base node, it is possible to find the relative
locations of all its neighbors with some constant distance
traveled. As such, the mobile can keep visiting the nodes
in the network by traveling along the direction of the edges
as made possible by ranging. The gradient formed along the
edges assures that the mobile is not lost throughout its mission.

We introduce M AT BOL as a localization problem for
W SNs. The input for a given instance of M AT BOL is a graph
with the nodes in general position, as well as a designated
base node. The objective is to find the shortest path traveled
by the mobile beacon, sitting initially at the base, such that
all the nodes are localized either by the mobile beacon itself,
or using trilateration. As the movement by the mobile beacon
is the primary source of the energy dissipation, traveling the
shortest distance is essential in minimizing the energy utilized.
It should be noted, however, that setting the objective to min-
imize the total distance traveled by the mobile is not the only
viable option. An equally important choice for the objective
could be to maximize the accuracy of the localization achieved
[4], [12]. In many real world applications, where a mobile
is employed to assist the localization, the objective could
be either the shortest distance traveled or the most accurate
localization achieved, or even a combination of these two. In
this paper, we are mainly concerned with the minimization
of the energy consumed by the mobile beacon while it is
moving. It is worth noting at this point that the problem of
energy efficient localization with the aid of one or more mobile
beacons is at the top of the list of open research problems in
[8]. Therefore, proving M AT BOL NP-hard is an essential first
step taken to demonstrate the computational difficulty of this
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class of problems.
It is already known that noisy measurements, inevitable in

many real world applications, has a huge impact on localiza-
tion. Such distance measurement errors turn, for example, the
complexity of trilateration from polynomial to NP-hard [7]. It
should be noted, however, that we assume error-free distance
measurements in M AT BOL. This is a decision made deliber-
ately as the NP-hardness of M AT BOL directly implies NP-
hardness when the distance measurements are noisy. Moreover,
such a result would readily imply the NP-hardness also when
the goal is to travel the shortest distance with an additional
constraint used to ensure a specified localization accuracy.
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Fig. 1. An example WSN graph. The objective of the mobile at s is to
localize the entire graph by travelling the minimum distance possible.

Figure 1 shows an example graph where the mobile beacon
rests on the base denoted by s. For the sake of brevity, an
unweighted version of the graph is presented in the figure.
If the mobile beacon visits the nodes labeled 2, 1, and 8 in
this order, then the rest of the nodes could be localized using
trilateration only, without the need for the mobile to travel any
further. Node 7 is localized using the nodes in {s, 1, 2}, node
3 is localized using the nodes in {1, 2, 7}, node 4 is localized
using the nodes in {2, 3, 7}, node 5 is localized using the
nodes in {s, 4, 8}, and finally node 6 is localized using the
nodes in {3, 4, 5}. It should be noted that node 8 does not
have enough connectivity to be localized by trilateration only,
therefore a visit to it is mandatory to localize it. If the mobile
visits the nodes in the alternative order 1, 8, and 5, then another
node 4 needs to be visited to kick start the trilateration. It can
be easily observed that, when the mobile beacon visits node
6 instead of node 4, trilateration still cannot start. Therefore,
assuming that each edge in Figure 1 has the same unit cost,
the minimum distance to be traveled by the mobile beacon to
localize all the nodes cannot be less than 3 units. The path {s,
2, 1, 8} is hence optimal.

The contributions in this paper are listed as:

• We give a formal definition of a problem for the energy
efficient use of a mobile beacon for trilateration based
localization in W SNs.

• We prove, to the best of our knowledge, for the first time
that the M AT BOL problem is NP-hard.

• We also give a compact Integer Linear Programming
(ILP) formulation for M AT BOL.

The rest of the paper is organized as follows. Section II
presents the formal problem definition and the NP-hardness
proof. An ILP formulation for the problem is given in Section

III. Finally, Section IV concludes the paper along with a list
of open problems.

II. PROBLEM DEFINITION
We start by giving the formal definition of the M AT BOL

problem below.
Definition II.1. Given an undirected graph G(V, E) with
w(e) ≥ 0 for all e ∈ E corresponding to the distances as
measured by the nodes in V, the objective of the MATBOL
problem is to localize the nodes in G based on trilateration
with the assistance of a mobile beacon situated initially at a
designated node s ∈ V so that the total distance traveled by
the mobile gets minimized.

We will prove that the MATBOL problem is NP-hard by a
reduction from the All Colors Shortest Path (ACSP) problem
that has been proved to be NP-hard and also not to lend itself to
a constant factor polynomial time approximation unless N P =
P in [5]. The input to an instance of the ACSP problem is
an undirected graph with a color assigned in advance to each
node, and a non-negative weight for the edges. The objective
of ACSP then is to find the shortest, possibly non-simple, path
starting from a designated base node such that a node from
every distinct color occurs at least once on the path.

We can describe a polynomial time reduction from a given
instance of ACSP to the corresponding instance of MATBOL.
Let us assume that the given instance of the ACSP problem
is identified by the 4-tuple < G(V, E), s, κ,w >, where s ∈ V
is the base node, κ : V → C is a function assigning a color
from C = {1, 2, ..., k} to every node in V , and w({i, j}) ≥ 0 is
the weight of an edge for all {i, j} ∈ E. We start modifying
the given graph G(V, E) to obtain a new graph G′(V ′, E ′) by
adding two dummy nodes v (1) and v (2) for each v ∈ V (V ′ =
V ∪ {v (1), v (2) |v ∈ V }). The nodes v (1) and v (2) are then both
connected to the node v (also referred to as v (0)) by an edge
for all v ∈ V (E ′ = E ∪ {{v, v (1) }, {v, v (2) }|v ∈ V }). The color
of the newly added nodes are set to be the same as the node to
which they are connected (κ(v (1)) = κ(v (2)) = κ(v (0)),∀v (0) ∈

V ). The weights for the newly added edges are all finally set
to 0 (w({v (0), v (1) }) = w({v (0), v (2) }) = 0,∀v (0) ∈ V ). This
transformation is shown in Figure 2 for a single node v.

v(1)	

v(0)	 v(0)	

v(2)	

Fig. 2. Each node v (0) (or v) ∈ G is connected to two dummy nodes v (1)

and v (2) via edges of weight (distance) zero. The colors of these dummies
are set to be the same as the color of v (0).

In the next phase of the transformation process, a random
cyclic order is created for every group of nodes with the same
distinct color. This order is then used to simply enforce a
trilateration ordering to make it possible to start from any node
already localized with a particular color and then to localize
the rest of the nodes with the same color without any help
from the mobile. To this end, a random permutation πc =
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u(1)	 v(1)	

u(2)	 v(2)	

u(0)	 v(0)	

Fig. 3. u = πc (i) and v = πc ((i mod |gc |) + 1). The dashed lines are the
edges newly added. Note that u (p) and v (q) should all have the same color.

πc (1)πc (2)...πc (|gc |) of the nodes in gc = {v ∈ V |κ(v) =
c} is picked for each distinct color c ∈ C. Specifically, the
edges {(πc (i))(p), (πc ((i mod |gc |)+1))(q) }, for a total of all
9 combinations of p, q ∈ {0, 1, 2}, are then added in E ′ with
i ranging from 1 through |gc | for all colors c ∈ C. These
newly added edges are drawn in Figure 3 as dashed lines. The
weights of these edges are all set to the shortest distance in G
between the consecutive nodes in the random order picked for
each color (w({(πc (i))(p), (πc ((i mod |gc |) + 1))(q) }) = the
shortest distance between (πc (i))(0) and (πc ((i mod |gc |) +
1))(0) in G). It should be noted at this stage that the required
shortest distances between nodes can be computed by a single
run of the All Pairs Shortest Path algorithm.

Finally, the mobile is placed at s ∈ V ′, which happens to
be the base node in the given instance of the ACSP problem.

The construction of the corresponding instance of the new
graph G′ and hence the entire transformation takes polynomial
time.

Lemma II.2. A given instance of ACSP has a solution with
cost (length) ∆ if and only if the corresponding instance of
MATBOL obtained after the transformation has a solution
with cost (total distance traveled) ∆.

Proof. Let us first prove the only if part. Let us assume that
the given instance of ACSP has a solution with cost (length)
∆. As this solution in G visits at least one node from every
group of nodes with the same distinct color, the mobile starting
at s travels over the exact same, possibly non-simple, path
to localize all the nodes in G′ by the trilateration orderings
constructed in the transformation.

In order to prove the if part, we start by assuming that
the total distance traveled by the mobile in the corresponding
instance of the MATBOL is ∆. We can then claim that this
very path traversed by the mobile visits every color (that is,
a node of this color) at least once. This is justified by the
observation that the dummies introduced in the transformation
have no option but to be visited by the mobile in order to be
localized unless a node in the cyclic order associated with the
corresponding color has already been visited. �

Theorem II.3. MATBOL is NP-hard.

Proof. It is a direct consequence of Lemma II.2 and the
observation that the transformation is polynomial in the size
of the given ACSP instance. �

Even though the type of the underlying graph employed to
represent W SNs might have implications on the intractability
and computational characteristics of M AT BOL, we claim that

limiting the graph type to UDGs as generaly used in W SNs
will not change the NP-hardness of the M AT BOL problem.
The proof of that claim is left as an interesting open problem.

III. INTEGER LINEAR PROGRAMMING FORMULATION OF
M AT BOL

In this section, we present an ILP formulation for the
M AT BOL problem. Given an undirected weighted graph
G(V, E), and a designated base vertex s ∈ V as an instance of
the M AT BOL problem, we apply the following transforma-
tions to obtain a new directed weighted graph G′(V ′, E ′) as
follows:
• All vertices in G are copied to G′ so that V ′ = V , where
|V | = n.

• For each edge {{i, j} ∈ E | i, j ∈ V } with weight
w({i, j}), an edge e(i, j) with weight wi, j , and a new
edge e( j, i) with weight w j, i are added to G′, with
wi, j = w j, i = w({i, j}). G′ is now a directed graph,
obtained by replacing each edge in G by two directed
edges with the same weight as the respective edge in G.

• For each vertex v ∈ V in G, a new sink vertex v′, and
a new edge e(v, v′) with zero weight are added to the
graph G′. Therefore, we ensure that a feasible path as a
solution exists and always terminates at a sink vertex.

• A new source vertex 0 is added to G′ such that V ′ =
V ′∪ {0}, and set the new base s′ = 0. A new edge e(0, s)
with zero weight is also added from vertex 0 to vertex s
in G′.

We are now ready to give an ILP formulation for
M AT BOL. The ILP formulation uses four classes of decision
variables given as follows:
• xi, j represents whether the corresponding directed edge is

visited or not, such that,

xi, j =



1, if edge (i, j) is visited as part of the solution,
0, otherwise.

• yi represents whether the corresponding node is visited or
not, such that,

yi =



1, if node i is visited as part of the solution,
0, otherwise.

• f i, j represents the flow value for the corresponding edge,
such that,

f i, j =



1, . . . , n + 1, if edge (i, j) is part of the solution,
0, otherwise.

• li,k represents the trilateration order of node i, such that,

li,k =



1, if node i is trilaterated at stage k,
0, otherwise.

We give the objective function and the constraints of the
ILP model as follows:

minimize
∑

(i, j ):(i, j )∈E

xi, j ∗ wi, j (1)

subject to
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∑
j :( j, i)∈E′

x j, i =
∑

j :(i, j )∈E′
xi, j , ∀i ∈ V (2)

y j ≥ xi, j , ∀(i, j) ∈ E ′ (3)∑
i:(i, j )∈E′

xi, j ≥ y j , ∀ j ∈ V ′ \ {0} (4)

∑
j :( j, i)∈E′

f j, i = yi +
∑

j :(i, j )∈E′
f i, j , ∀i ∈ V (5)

xi, j ≤ f i, j ≤ (n + 1) ∗ xi, j , ∀(i, j) ∈ E ′ (6)

yi +

n−4∑
k=0

li,k ≥ 1 , ∀i ∈ V (7)

3 ∗ li,k ≤ 3 ∗ yi +
∑

j :( j, i)∈E

y j

≤ M + (2 − M) ∗ (1 − li,k )
, ∀i ∈ V, k = 0 (8)

3 ∗ li,k ≤ 3 ∗ yi +
∑

j :( j, i)∈E

l j,k−1

≤ M + (2 − M) ∗ (1 − li,k )
, ∀i ∈ V, k > 0 (9)

x0,s = 1 (10)
xi, j ∈ {0, 1} , ∀(i, j) ∈ E ′ (11)
yi ∈ {0, 1} , ∀i ∈ V ′ \ {0} (12)
f i, j ∈ {0, 1, ..., n + 1} , ∀(i, j) ∈ E ′ (13)
li,k ∈ {0, 1} , ∀i ∈ V, (14)

∀k ∈ {0, ..., n − 4}

The feasible solution to the M AT BOL problem is a, possi-
bly non-simple, path that ensures all the vertices are localized
either by a visit of the mobile, or by trilateration using already
localized neighbours. The objective is to minimize the total
distance as shown in (1). Constraints (2) assure that the number
of the incoming and the outgoing edges on a feasible path are
equal for all the vertices visited with the exception of the
source vertex and the sink vertices. Therefore, the constraints
are defined only on the vertices in V . Constraints (3) guarantee
that a vertex j is visited if an incoming edge (i, j) is part of
the solution. Constraints (4) assert that if the feasible path
visits vertex j, then there should be at least one incoming
edge (i, j) that gets visited. Constraints (5) and (6) eliminate
subtours by introducing flow values for each edge visited as
presented in [5]. Constraints (5) make sure that each vertex
visited consumes a unit flow while Constraints (6) bound the
maximum flow value carried on an edge. The rule to localize
each vertex is either to visit it as part of the solution, or
the vertex should have at least three already visited, hence
localized, neighbors allowing for the trilateration of this vertex.
The decision variable li,k represents the trilateration order for
vertex i such that li,k = 1 when vertex i is localized at stage k.
Constraints (7) guarantee that all the vertices in V are localized
either by a visit or by trilateration. As |V | = n, and trilateration
needs at least three visited vertices to initiate, a maximum
of n − 3 stages are required by the trilateration algorithm.
Constraints (8) and (9) ensure that each vertex is either visited
by the mobile or has at least three visited neighbors. Therefore,
vertices localized in the early stages of the trilateration are
used to locate the unlocalized vertices in the later stages of the

trilateration. M is a large value not any less than the maximum
degree of all the nodes plus three. Constraint (10) initiates
the path from the source node towards the base node so that
the base node is always visited as part of the feasible path.
Constraints (11), (12), (13), and (14) are integrality constraints
for the decision variables used in the model.

The feasible solution to this ILP for M AT BOL gives a
possibly non-simple path depicting the optimal path of the
mobile beacon used in the problem.

IV. CONCLUSION

The difficulty of energy efficient trilateration with help from
a mobile beacon in W SNs is formalized and investigated in
this paper. This version of the localization problem introduced
as M AT BOL is proved to be NP-hard. A compact ILP formu-
lation is also provided for M AT BOL. The paper is expected to
pave the way for the development of new heuristic algorithms
possibly with known approximation bounds. Proving the NP-
hardness of M AT BOL when the underlying graph is an UDG
is left as an interesting open problem.
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