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Hervé Brönnimann
Computer & Information Science Department
Polytechnic University, Brooklyn, NY 11201

hbr@poly.edu

Abstract— The processing capabilities of wireless sensor
nodes enable to aggregate redundant data to limit total
data flow over the network. The main property of a good
aggregation algorithm is to extract the most representative
data by using minimum resources. From this point of
view, sampling is a promising aggregation method, that
acts as surrogate for the whole data, and once extracted
can be used to answer multiple kinds of queries (such as
AVG, MEDIAN, SUM, COUNT, etc.), at no extra cost.
Additionally, sampling also preserves the correlation info
within multi-dimensional data, which is quite valuable for
further data mining. In this paper, we propose a novel,
distributed, weighted sampling algorithm to sample sensor
network data and compare to an existing random sampling
algorithm, which to the best of our knowledge is the only
algorithm to work in this kind of setting.

I. INTRODUCTION
In this paper, we focus on sampling from a set of

sensor nodes linked by a network and consider the prob-
lem of extracting answers to queries about conditions
inside the sensor network. These queries may be based
on snapshots, or may be continuous. The data collected
by the sensors is usually highly redundant, and thus one
need not collect and process all of it, approximate query
results are usually sufficient. Hence, substantial savings
may be obtained by either aggregating or processing the
data in-network, or by obtaining a much smaller but
representative sample which can then be processed by
a centralized more powerful unit.

One particular kind of data we focus on is the multi-
dimensional count data that arises fairly often from
market basket data or census-like applications, or in
the context of sensor networks, from monitoring several
parameters of an environment. We contend that col-
lecting and maintaining a representative sample of the
data from the sensor network is a promising solution
for this problem because samples, unlike other synopsis
structures, are general-purpose and can be used as a sur-
rogate for the (expensive) network[2]. In other domains,
sampling has long been used to answer approximately
many aggregation queries[7] such as MEDIAN, AVG,
COUNT, and MODE.

Although random sampling is an easy and intuitive
way to answer approximate queries, random deviations
in the sampling process, however, make random sam-
pling somewhat less precise and unpredictable. In the
context of transactional data sets, a simple deterministic
procedure (EASE [3], refined in Biased-L2 [1]) produces
samples whose error is consistently an order of magni-
tude better than that of a random sample. In the context
of sensor networks, we find that this translates into
order-of-magnitude communication and energy savings,
namely, for an equivalent RMS error, our deterministic
sample is much smaller thus requires lower energy costs
(including extra communication requirements of the al-
gorithm). Alternatively, for the same resource spending,
one gets a much more accurate picture.

We give an overview of the previous work in Section
II. In Section III, we present an arbitrary aggrega-
tion structure for sampling, discuss the motivation for
weighted sampling in this kind of aggregation structures
and finally present our deterministic sampling algorithm.
In Section IV we study experimentally our algorithm by
comparing to other (non-deterministic) sampling algo-
rithms, while focusing on issues such as sample quality,
energy and communication costs. Finally, we conclude
in Section V with both discussion and future work.

OUR CONTRIBUTIONS
• We propose a novel deterministic weighted sam-

pling algorithm as a new aggregation method for
sensor network data. To the best of our knowledge,
this is the first distributed deterministic sampling
algorithm for sensor networks.

• Our algorithm weights the samples and adjusts the
weights dynamically, which enables to work on
networks organized in any arbitrary topology.

• In our deterministic weighted sampling algorithm,
data aggregation via sampling is done on all (partic-
ipating) nodes, which equally distributes sampling
work over the network, and prevents any node from
being a bottleneck (both CPU and communication
based).



II. RELATED WORK
In this section, we give an overview of the previous

work and state the relations and differences compared
to our work. In [1], Biased-L2 is presented, which
improves on EASE[3], [4] to deterministically sample
streaming count data. Both algorithms sample by in-
troducing penalty functions using the support of each
item. EASE and Biased-L2 are designed to work on
centralized database settings, where data is stored in a
database or comes from a single stream, so they are not
directly applicable to sensor network settings, where data
is distributed and network topology is unknown. In our
paper, we propose a novel deterministic sampling algo-
rithm that uses similar ideas to Biased-L2, but extended
to handle weights and distributed sources, essential for
sensor network data extraction.

Recently, data aggregation in sensor networks at-
tracted great attention from the research community.
In sensor networks, where the in-network processing
of various aggregate queries is paramount, data aggre-
gation inside the network could drastically reduce the
communication cost (consequently, prolong the battery
life) and ensure the desired bounds on the quality of
data. Madden et al.[12] propose an effective aggregation
tree (TAG-tree), which works on well defined epochs,
and reduces the communication by using an optimum
tree structure. We also used a tree generation algorithm
similar to TAG-tree, where iterative broadcast from sink
to the rest of the network is used to create a tree that
covers the whole network.

Although the tree structure is optimal for commu-
nication, it is not robust enough for sensor networks.
The robustness issue led researchers to propose a DAG
architecture instead of an aggregation tree. Addressing
the duplication problem of the DAG architecture, Consi-
dine et al.[6] and Nath et al.[14] independently proposed
using duplicate-insensitive sketches for data aggregation
in sensor networks. While Considine et al. focus only on
efficiently counting SUM aggregates, Nath et al. give a
general framework of defining and identifying order and
duplicate insensitive (ODI) synopsis, including a uniform
random sample (DIR sample as we call it in this paper).
In our paper, we compare our algorithm to DIR, which
computes a uniform random sample of the sensor data
on any arbitrary hierarchical network structure, using an
optimum number of messages.

Manjhi et al.[13] by combining the tree and multi-
path aggregation structures, propose a tributary-delta
structure, that benefits from both. Both structures exist
together, and convert to each other, so the tributary-delta

can behave as effective as a tree and as robust as a
multi-path, depending on the need and network topology.
Shrivastava et al. propose an aggregation technique for
medians in [15], specifically for sensor networks. Green-
wald and Khanna [8] extended their space-efficient order
statistics algorithms for sensor networks.

In their work, Heinzelman et al.[9] and Chen et
al.[5] present energy formulas for wireless transmission
and receive. According to [5], the energy usage during
idle::receive::transmit is respectively 1::1.2::1.7. We also
used the same energy formulas in our evaluations.

III. DISTRIBUTED DETERMINISTIC SAMPLING
In this section we discuss the shortcomings of the

existing deterministic sampling algorithms for arbitrary
sensor network topologies, and present the necessities
for using weights in the sampling algorithm. Later we
present our Deterministic Weighted Sampling (DWS)
algorithm, which is designed to run on distributed en-
vironments such as sensor networks. The simplicity and
effectiveness of DWS is most appropriate to run on
resource-restraint hardware such as sensor nodes. In
this version, the notation required to understand the
algorithms are omitted for the sake of brevity, and can
be found in [1].
A. Aggregation data structure.

In this setting, the data is distributed over the nodes,
hence each node x holds a subset Dx of D such that
∪xDx = D. (In the extreme case, each node holds
a single value, which may be updated over time.) We
assume that an aggregation tree structure is already
available for our algorithms. We do not require any
specific property on the tree, other than its connectedness
(it must cover all the nodes). Once the aggregation tree
is built, sensor nodes, starting from the leaves of the
tree, create a sample of size s = αn from their data,
and forward these samples to their parents. Nodes in the
middle levels of the tree wait until they gather samples
from all their children (or for a timeout), and then do
sampling on all the gathered data, including their own,
to create a sample of size s. This sampling scheme is
similar to the DIR [14], and maintains a sample of size
s for every node in the network.
B. Motivation for weighted sampling

One important challenge here is that, since we work
on arbitrary aggregation trees, and the tree topology
changes with the underlying sensor network topology,
each node in the tree has an arbitrary number of children.
In particular, the sampling rate on each node varies
depending on the number of children. Simply gathering
all the children’s samples in a big chunk of data and



DWS(D, W, x, α)

1: wx ← 1/(α ·Wx)
2: for each child y do
3: wy ←Wy/(α ·Wx)
4: for each item i do
5: ni ← ri ← 0
6: for each record j in Dx ∪ (∪yDy) do
7: sumn ← 0, sumr ← 0
8: for each item i in j do
9: sumn ← sumn + ni; sumr ← sumr + ri

10: ni ← ni + wj

11: R← sumr − α · sumn

12: K ← 2 · α · wj − (2 ·R)/size(j)
13: if K > 1 then
14: Insert j into the sample Sx

15: for each item i in j do
16: ri ← ri + 1
17: return (Sx, Wx)

Fig. 1. The Deterministic Weighted Sampling algorithm

deterministically or randomly sampling over this chunk
would introduce misrepresentations in the sample of a
node. Namely, the sample values of nodes closer to
the sink in the tree would have more chance to appear
in the final sample. This is the main reason existing
centralized algorithms (EASE, Biased-L2) don’t work
on sensor networks. To overcome this difficulty in our
algorithm, we introduce weights for each sample, which
are simply the representation of how many other nodes
this sample stands for. Deterministically sampling the
gathered data using the weights, we guarantee that each
node’s data has the same chance to belong to the final
sample, independent from its provenance in the network.

C. Deterministic Weighted Sampling (DWS)
We discussed the motivation for weighted sampling

in distributed environments in the previous section. In
this section, we present the main weighted sampling
algorithm. DWS (pseudo-code given in Figure 1) handles
weighted sampling at a node x, where the data comes
locally from Dx with a weight of 1, and otherwise from
the samples in its children y, each with a weight Wy.
Thus Wx = 1 +

∑
y Wy, and these weights can be

accumulated in the network at a very low cost. These
weights are normalized by αWx as in lines 1–3, and we
abuse the notation slightly to use wj ← wy for each
record j coming from source y.

For each item i, the algorithm uses Qi = (ri−αni)2 as
the penalty function. The total penalty is Q =

∑
i∈I Qi.

For each i ∈ j, accepting a record j increases ri by 1
and ni by wj , while rejecting a record only increases ni

by wj , where wj is the weight of the record j in dataset.
During sampling, each record is added to the sample
with a weight of 1. After sampling the record weights
are updated to reflect the total weight of that sample. For

sake of space, the details of calculating the acceptance
rule used in Figure 1 are omitted here.

As the communication costs are the dominating fac-
tor in sensor networks, we present the performance of
the algorithm in number of messages. Assuming each
sample value fits in a single message, the sample size
of each node is s, and the total number of nodes is
m, our algorithm performs a full sampling with O(sm)
messages. The memory requirement of the algorithm
is O(m + αnTavg), based on storing the counts for
each item, weights for each record and the raw sample.
Practically speaking, if we assume we are using a dataset
with 5 tuples per record, we need to use 6 integers
(24 bytes) to store a record with its weight. Typically,
keeping a sample of 1000 records requires 24 Kbytes.
If we assume each tuple has granularity 100, we need
2 Kbytes to store integer counts for the items. Since a
typical sensor node (ex. Berkeley Motes) currently has
128 Kbytes of memory, we assume these are reasonable
memory requirements.

IV. EXPERIMENTS
In the experiments section, we demonstrate our work

using the wireless sensor network simulator Shawn [11].
In Section IV-A we give the simulation results of our

deterministic algorithm (DWS), and compare the results
to other algorithms such as naive random sampling and
Duplicate Insensitive Random (DIR) sampling. We show
that our algorithm has many advantages such as better
sample quality and less communication rate compared to
other methods.

All energy usage calculations in the experiments are
based on total number of sent and received messages.
Using the weights from[5], the received messages are
weighted with 1.2 and the sent messages are weighted
with 1.7 and energy usage for a node is the total. Each
tree building message is calculated as a single message,
also when exchanging samples between nodes, each
record is assumed to fit in exactly one message, also
the weights of the whole sample are assumed to fit in
one message.
A. Distributed Data Reduction

In this section, we give the simulation results of our
Distributed Weighted Sampling algorithm on sensor net-
works. The evaluation is based on two category, the sam-
ple quality and the energy usage. In order to demonstrate
our work, we also include the naive random sampling
algorithm and a more advanced, Duplicate Insensitive
Random (DIR) sampling algorithm from Nath et al.[14].

The synthetic dataset (T10I6D1500K), which is an
association rule dataset, is created using the IBM data



Fig. 2. Results for synthetic dataset. (left) RMS results vs. sample size, (center) energy usage vs. sample size, and (right)
energy usage vs. sample quality.

generator [10]. The synthetic dataset includes 1,500,000
records, each having different number of items. Each
item represents a different sensor reading, and a record
represents a total reading from a sensor, with various
items. For simulations, we used 227 nodes, randomly
deployed in a 60x25 area, sink on the center.

The simulation results show the averages of running
DWS and random algorithms on synthetic dataset 100
times. Figure 2 (left) shows the RMS error values of
the final sample generated by the algorithms for four
different sample sizes 1000, 2000, 3000 and 4000. We
can see that our DWS algorithm generates up to 3 times
better quality samples than the other two algorithms.

Figure 2 (center) shows the total energy used in the
network while generating the samples. The energy usage
is calculated based on the total number of messages sent
and received as described in Section IV. Energy usage
results are scaled for a clear presentation. As expected,
the energy usage of DIR and DWS are the same, and
are superior to that of the naive random sampling.

To clearly compare DIR and DWS algorithms, in
Figure 2 (right), we generate two samples having the
same quality based on RMS error values and compare
the energy used by both algorithms. Here, DIR algorithm
still uses samples of sizes 1000, 2000, 3000 and 4000.
The sample sizes of DWS algorithm are 314, 505, 685,
and 766. From the figures it is clear that, we can have the
same quality sample by using considerably less energy
if we use our DWS algorithm.

V. CONCLUDING REMARKS AND FUTURE WORK

We have presented a novel deterministic weighted
sampling algorithm as a new aggregation method for
network of wireless sensors. Deterministic Weighted
Sampling is simple enough to not consume too many
resources locally, and we validate through experiments
that the sample it provides is vastly superior to other
distributed sampling methods exist for sensor networks.
Our algorithm is designed to work on arbitrary net-
work topologies, by introducing weights for samples

and dynamically updating these weights throughout the
sampling. DWS by design effectively distributes the
aggregation work over all the nodes by enabling each
node to generate a fixed sized sample and prevents any
node from being a bottleneck.

One criticism of our approach is that loss of connec-
tion in the aggregation tree structure induced by link or
node failure can have drastic effects on the representativ-
ity of our sample, since an entire subtree may no longer
be contributing to the sample. This can be handled by
allowing a multi-path aggregation structure [14], [13].
In the context of aggregation, however, one must then
address the problem posed by the duplication of the data
along these multi-paths. The duplicate-insensitive solu-
tions provided by Nath et al. [14] and Considine et al. [6]
do not extend to our deterministic algorithm, and we
leave it as a matter for future research to handle robust
connectivity with our deterministic sampling algorithm.
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