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Abstract

The processing capabilities of wireless sensor nodes enable to aggregate redundant data to limit total

data flow over the network. The main property of a good aggregation algorithm is to extract the most

representative data by using minimum resources. From this point of view, sampling is a promising

aggregation method, that acts as surrogate for the whole data, and once extracted can be used to

answer multiple kinds of queries (such as AVG, MEDIAN, SUM, COUNT, etc.), at no extra cost to

the sensor network. Additionally, sampling also preserves correlations between attributes of multi-

dimensional data, which is quite valuable for further data mining. In this paper, we propose a novel,

distributed, weighted sampling algorithm to sample sensor network data and compare to an existing

random sampling algorithm, which is the only algorithm to work in this kind of setting. We perform

popular queries to evaluate our algorithm on a real world data set, which covers climate data in the U.S.

for the past 100 years. During testing, we focus on issues such as sample quality, network longevity,

energy and communication costs.
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1 Introduction

In this paper, we focus on sampling data from a set of sensor nodes linked by a network and

consider the problem of extracting the sample from the network to a central DBMS and later

querying it to find answers to conditions inside the sensor network. These queries may be

based on snapshots, or may be continuous. The data collected by the sensors is usually highly

redundant, and thus one need not collect and process all of it, approximate query results

are usually sufficient. Hence, substantial savings may be obtained by either aggregating or

processing the data in-network, or by obtaining a much smaller but representative sample

which can then be processed by a centralized more powerful unit.

One particular kind of data we focus on is the multi-dimensional count data that arises fairly

often from market basket data, census-like applications, or in the context of sensor networks,

from monitoring several parameters of an environment. For instance, Mainwaring et al. [27]

engineer Mica Weather Boards to record temperature, humidity, and barometric pressure.

Additional components like photo-resistor and infrared thermopile sensors can join forces to

infer other parameters such as cloud cover, altitude or wind speed. Levon [23] is developing a

biosensor array for detecting biological warfare agents; this array can report and monitor the

presence of a number of chemical compounds, and the data is inherently multi-dimensional as

we are not only interested in each parameter but also in their interaction. In this context, one

may desire to investigate possible correlations, to discover that certain combination of values

occur more often than others if certain conditions are met (association rules), or to construct

a data cube (or iceberg cube if only the most significant statistical data is desired). Note that

outliers are also of potential interest, especially to act as triggers; they can be monitored

using completely different techniques, so we do not consider those here, rather we focus on

extracting the most significant statistical trends.
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We contend that collecting and maintaining a representative sample of the data from the sen-

sor network is a promising data aggregation solution because samples, unlike other synopsis

structures, are general-purpose and can be used as a surrogate for the (expensive) network [5].

In other domains, sampling has long been used to answer many aggregation queries approxi-

mately [15] such as MEDIAN, AVG, COUNT, and MODE. It also has been successfully used

to speed up data mining tasks such as finding correlations and association rules [2,7,9,33,35],

and iceberg cubes [2, 28]. In the context of sensor networks, using sampling as a surrogate

can be most appropriate for this kind of global analysis, because the whole data must be

available to find correlations, and gathering the whole data in a centralized unit requires pro-

hibitive communication costs. Tailored aggregation procedures have better accuracy, but each

requires its own communication costs, while the sample is computed and maintained once and

enables any number of a wide range of queries out-of-network with still reasonable accuracy

at no cost to the network. Moreover, an approximate answer often suffices and more precise

results can be obtained otherwise by ‘drilling down’ in the network in an OLAP fashion.

Although random sampling is an easy and intuitive way to answer approximate queries, ran-

dom deviations in the sampling process, however, make random sampling somewhat less

precise and unpredictable. In the context of transactional data sets, a simple deterministic

procedure (EASE [7], refined in Biased-L2 [2]) produces samples with errors consistently an

order of magnitude better than that of a random sample. In the context of sensor networks, we

find that this translates into order-of-magnitude communication and energy savings, namely,

for an equivalent RMS error, our deterministic sample is much smaller thus requires lower

energy costs (including extra communication requirements of the algorithm). Alternatively,

for the same resource spending, one gets a much more accurate picture.

We also would like to mention a few applications of our sampling scheme. By integrating

spatial regions as categorical attributes, our sample will try to be representative in space as

well as for the measurement. That is, it will have the same spatial distribution as the original
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set of sensors, at least at the resolution of regions. Note that the regions may overlap. The

regions of a hierarchical subdivision such as quadtrees or hierarchical uniform grids may be

desirable to ensure scale-independence, therefore regions adapted to a natural decomposition

such as counties for census data may sometimes be more appropriate. In monitoring homeland

security chemical threats, being able to detect the emergence and geographic spread of a

hostile chemical compound [23] involves combining geographic information with that of the

biosensor array to ensure that environmental conditions are accurately sampled. For this to be

accurate, the sampling rates (both temporal and spatial) must be adjustable at the node level,

which can easily be achieved by tweaking the weights in our weighted sampling approach.

The rest of the paper is organized as follows: We give an overview of the previous work in

Section 2. In Section 3, we present an arbitrary aggregation structure for sampling, discuss

the motivation for weighted sampling in this kind of aggregation structures and finally present

our deterministic sampling algorithm. In Section 4 we introduce the real world climate dataset

we used in our simulations, and then experimentally study our algorithm by comparing to

existing sampling algorithms, while focusing on issues such as sample quality, energy and

communication costs. Finally, we conclude in Section 5 with both discussion and future work.

Our Contributions

Our main contributions in this paper are:

• We propose a novel deterministic weighted sampling algorithm as a new aggregation

method for sensor network data. To the best of our knowledge, this is the first distributed

deterministic sampling algorithm for sensor networks.

• Our algorithm weights the samples and adjusts the weights dynamically, which enables to

work on networks organized in any arbitrary topology.
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• In our deterministic weighted sampling algorithm, data aggregation via sampling is done

on all (participating) nodes, which equally distributes sampling work over the network, and

prevents any node from being a bottleneck (both CPU and communication based).

2 Related Work

In this section, we give an overview of the previous work and state the relations and differ-

ences compared to our work.

In a preliminary version [3], we present the basic algorithm and experiments with the random

dataset. In this version, we further extend on the previous work both in terms of the algorithm

details and experiments.

In [2], Biased-L2 is presented, which improves on EASE [7, 8] to deterministically sample

streaming count data. Both algorithms sample by introducing penalty functions using the

support of each item. Each penalty function is minimized when the item frequency over the

sample equals that over the whole data set, and increases sharply when item is under- or over-

sampled. EASE reduces the number of records in the sample by applying halving steps on

the sample, while Biased-L2 is a single pass algorithm that gives a final decision for adding

the record to the sample or not by examining the record only once. EASE and Biased-L2

are designed to work on centralized database settings, where data is stored in a database or

comes from a single stream, so they are not directly applicable to sensor network settings,

where data is distributed and network topology is unknown. In our paper, we propose a novel

deterministic sampling algorithm that uses similar ideas to Biased-L2, but extended to handle

weights and distributed sources, essential for sensor network data extraction.

The research on stream processing is highly relevant to our work. Stream database systems

aim to process data streams as fast as possible while avoiding the need to store the entire

data. In most cases, this results in approximate answers to the queries. Aqua [15] uses an ap-
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proximation engine to quickly answer typical aggregate queries while incrementally refining

the result with the actual database results. Borealis [1] is a high-performance, low-latency

distributed stream processing engine. In addition to typical snapshot queries, STREAM [4]

queries in continuous fashion, which naturally adapts to stream data. Continuous queries are

also used in sensor network databases TinyDB [25] and COUGAR [34].

Recently, data aggregation in sensor networks attracted great attention from the research com-

munity [17,24,26,34]. In sensor networks, where the in-network processing of various aggre-

gate queries is paramount, data aggregation inside the network could drastically reduce the

communication cost (consequently, prolong the battery life) and ensure the desired bounds

on the quality of data. Madden et al. [26] propose an effective aggregation tree (TAG-tree),

which works on well defined epochs, and reduces the communication by using an optimum

tree structure. We also use a tree generation algorithm similar to TAG-tree, where iterative

broadcast from sink to the rest of the network is used to create a tree that covers the whole

network. COUGAR [34] also creates aggregation trees similar to TAG. Sharaf et al. [31]

propose more efficient ways of aggregation by exploiting group by queries, which works on

top of TAG and COUGAR aggregation. In addition to tree aggregation, cluster-based aggre-

gation approaches have also been investigated in LEACH [17, 18] and PEGASIS [24]. In

LEACH [17], randomly selected cluster heads perform aggregation, and communicate di-

rectly with the base station to reduce energy use, while in LEACH-C [18] the base station

broadcasts the cluster head assignments, further improving the energy use of the network.

PEGASIS [24] selects the cluster head by organizing nodes in a chain. Using only one cluster

head at a time conserves energy at the expense of introducing latency issues.

Although the tree structure is optimal for communication, it is not robust enough for sensor

networks. The robustness issue led researchers to propose a DAG architecture instead of an

aggregation tree. Addressing the duplication problem of the DAG architecture, Considine et

al. [11] and Nath et al. [30] independently propose using duplicate-insensitive sketches for
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data aggregation in sensor networks. While Considine et al. focus only on efficiently counting

SUM aggregates, Nath et al. give a general framework of defining and identifying order and

duplicate insensitive (ODI) synopsis, including a uniform random sample (DIR sample as

we call it in this paper). In our paper, we compare our algorithm to DIR, which computes a

uniform random sample of the sensor data on any arbitrary hierarchical network structure,

using an optimum number of messages. The algorithm initially assigns random weights to

data values. To generate a sample of size s, each node selects the sample values having the

biggest s weights. The selected sample values are propagated up the hierarchy to the sink.

Since during each sampling stage, the top s weighted samples are selected, after the final

stage, a uniform sample of size s is obtained. Similar to this approach, our algorithm also

uses a deterministic way to generate s samples for each node, thus effectively distributing

sampling work equally over every node.

Manjhi et al. [29] by combining the tree and multi-path aggregation structures, propose a

tributary-delta structure. Tree and multi-path structures coexist in this new structure, and

convert to each other, so the tributary-delta can behave as effective as a tree and as robust

as a multi-path, depending on the need and network topology. Shrivastava et al. propose an

aggregation technique for medians in [32], specifically for sensor networks. Greenwald and

Khanna [16] extend their space-efficient order statistics algorithms for sensor networks.

Compression is used recently as an aggregation method for sensor networks. Lazaridis and

Mehrotra [22] propose using a piecewise constant approximation algorithm to compress the

time series with quality guarantees. Since the method proposed is lossy compression for sin-

gle dimension time series only, applying it would not keep the valuable correlation informa-

tion in multi-dimensional data. We assume our data is multi-dimensional (such as temper-

ature, barometer, etc.) and we are mostly interested in the correlation of these dimensions.

Deligiannakis et al. [14] propose extracting a base signal from the data and further using

piecewise linear regression to compress the original signal, using the base signal. The algo-
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rithm explicitly uses the correlation between multiple dimensions of data (if exists) to increase

the effect of compression. Multi-dimensional lossy compression methods (that keep correla-

tions) and lossless compression methods are complementary to our work, since the samples

we create are subsets of the original data, and any method to compress the data can be ap-

plied to our samples too. In this paper, to focus on the original behavior of the algorithms, we

present the algorithms without the added benefit of compression.

In their work, Heinzelman et al. [17] and Chen et al. [10] present energy formulas for wireless

transmission and receive. According to [10], the energy usage during idle::receive::transmit

is respectively 1::1.2::1.7. We also use the same energy formulas in our evaluations.

3 Distributed Deterministic Sampling

In this section, we first present the notation essential to understand our algorithm. Later,

we discuss the shortcomings of the existing deterministic sampling algorithms for arbitrary

sensor network topologies, and present the necessities for using weights in the sampling al-

gorithm. Finally, we present our Deterministic Weighted Sampling (DWS) algorithm, which

is designed to run on distributed environments. The simplicity and effectiveness of DWS is

most appropriate to run on resource-restraint hardware such as sensor nodes.

3.1 Notation

Let D denote the database of interest, d = |D| the number of records, S a deterministic

sample drawn from D, and s = |S| its number of records. Each record consists of a set of

items. We denote by I the set of all items that appear in D, by m the total number of such

items, and by size(t) the number of items appearing in a single record t ∈ D. We let Tavg

denote the average number of items in a record, so that dTavg denotes the total size of the

database (as counted by a complete item per record enumeration).

For a set T of records and an itemset A ⊆ I , we let n(A; T ) be the number of records in T

that contain A and |T | the total number of records in T . Then the support of A in T is given by
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f(A; T ) = n(A; T )/|T |. In particular, f(A; D) = n(A; D)/|D| and f(A; S) = n(A; S)/|S|.

The distance between D and S with respect to the 1-itemset frequencies can be computed via

the L2-norm (also called ‘root-mean-square,’ or RMS),

RMS(D, S) =
√∑

A∈I

(f(A, D)− f(A, S))2 (1)

Our goal is to select a sample S of D of size α|D| (where 0 < α ≤ 1 is the sampling

rate) that minimizes the distance RMS(D, S). Although L2-norm is our choice of distance

metric in this paper, there are other possible notions of distance, for instance the discrepancy

(L∞-norm) can be used if the maximum deviation is important.

Finally, to relate the notation to our sensor data, we assume that nodes have multiple sensors

on them (such as temperature, barometer etc.). Each reading from a sensor corresponds to

an item. A total reading from a node includes all the sensor values for a particular time. The

collection of all the sensor readings correspond to records, and a whole record is transferred

between nodes during aggregation.

3.2 Aggregation data structure.

In sensor networks we assume that the data is distributed over the nodes, hence each node x

holds a subset Dx of D such that ∪xDx = D (In the extreme case, each node holds a single

value, which may be updated over time). We also assume that an aggregation tree structure

is already available for our algorithms. We do not require any specific property on the tree,

other than its connectedness (it must cover all the nodes). Once the aggregation tree is built,

sensor nodes, starting from the leaves of the tree, create a sample of size s = αx|Dx| from

their data Dx, and forward these samples to their parents. Nodes in the middle levels of the

tree wait until they gather samples from all their children (or for a timeout), and then do

sampling on all the gathered data, including their own, to create a sample of size s. Since

the desired sample size s is known, and Dx depends on the number of children, each node

adjusts its sampling rate αx accordingly. This sampling scheme is similar to the DIR [30],
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and maintains a sample of size s for every node in the network.

3.3 Motivation for weighted sampling

One important challenge for us in distributed sampling is that, since we do not enforce any

structure on the aggregation tree, the tree topology changes with the underlying sensor net-

work topology, and each node in the tree has an arbitrary number of children. In particular,

the sampling rate on each node varies depending on the number of children. Simply gathering

all the children’s samples in a big chunk of data and deterministically or randomly sampling

over this chunk would introduce misrepresentations in the sample of a node. Namely, the

sample values of nodes closer to the sink in the tree would have more chance to appear in the

final sample. An example aggregation tree clearly showing this situation is presented in Fig-

ure 1. The top node has three samples of size s, the one coming from the left subtree, the right

subtree and finally its own data. In this case, each sample has a different weight and a regular

sampling by ignoring these weights would give each of these three samples a 1/3 chance to

appear in the final sample. This means 1/3 chance for the top node’s data, 1/6 chance for

each left-subtree node’s data and 1/9 chance for each right-subtree node’s data. As we would

like to give each node’s data an equal 1/6 chance to be represented in the final sample, either

the bottom nodes should send more samples (vastly increasing the communication), or the

samples should be weighted and the sampling algorithm has to be designed accordingly. This

is the main reason existing centralized algorithms (EASE, Biased-L2) don’t work on sensor

networks. To overcome this difficulty in our algorithm, we introduce weights for each sample,

which are simply the representations of how many other nodes this sample stands for. Deter-

ministically sampling the gathered data using the weights, we guarantee that each node’s data

has the same chance to belong to the final sample, independent from its provenance in the

network.
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Fig. 1. An example aggregation tree showing the nodes, samples and the weights for each sample.

Each node gathers samples from its own data and children’s samples and creates a sample of size s.

The sampling process is well distributed on each node, since each node maintains a sample of size s.

3.4 Deterministic Weighted Sampling (DWS)

We discussed the motivation for weighted sampling in distributed environments in the previ-

ous section. In this section, we present the main weighted sampling algorithm. DWS (pseudo-

code given in Figure 2) handles weighted sampling at a node x, where the data comes locally

from Dx with a weight of 1, and otherwise from the samples in its children y, each with a

weight Wy. Thus Wx = 1 +
∑

y Wy, and these weights can be accumulated in the network at

a very low cost. Further, the weights are normalized by αxWx as in lines 1–3, and we abuse

the notation slightly to use wj ← wy for each record j coming from source y.

Based on the RMS distance function in Equation (1), but allowing weighted processing in

addition, the algorithm uses the following penalty function,

for each item i:

Qi = (ri − αni)
2,

where ri and ni are the weighted counts of item i in the sample and the dataset, respectively.

The total penalty is Q =
∑

i∈I Qi. For each i ∈ j, accepting a record j increases ri by 1 and ni

by wj , while rejecting a record only increases ni by wj , where wj is the weight of the record
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DWS(D, W, x, αx)

1: wx ← 1/(αx ·Wx)

2: for each child y do

3: wy ← Wy/(αx ·Wx)

4: for each item i do

5: ni ← ri ← 0

6: for each record j in Dx ∪ (∪yDy) do

7: sumn ← 0, sumr ← 0

8: for each item i in j do

9: sumn ← sumn + ni; sumr ← sumr + ri

10: ni ← ni + wj

11: R← sumr − αx · sumn

12: K ← 2 · αx · wj − (2 ·R)/size(j)

13: if K > 1 then

14: Insert j into the sample Sx

15: for each item i in j do

16: ri ← ri + 1

17: return (Sx, Wx)

Fig. 2. The Deterministic Weighted Sampling algorithm

j in dataset. During sampling, each record is added to the sample with a weight of 1. After

sampling finishes the record weights are updated to reflect the total weight of that sample.

Since the total weight of the sample is the number of other nodes it represents, the weight is

simply the total number of contributing nodes in the subtree up to the node in question, which

is easily accumulated at each sampling stage.

In order to accept a record into the sample, the penalty value should decrease, namely,

[(ri + 1)− α(ni + wj)]
2 − [ri − α(ni + wj)]

2 < 0,
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Refactoring the following per item condition, we obtain:

1 + 2(ri − αni − αwj) < 0,

Summing over all items in j, we get

size(j) + 2
∑
i∈j

(ri − αni − αwj) < 0,

After further manipulation, the condition becomes

size(j) + 2
∑
i∈j

(ri − αni)− 2αwj · size(j) < 0.

The acceptance rule then becomes:

2αwj −
2

∑
i∈j (ri − αni)

size(j)
> 1

which is the acceptance rule used in Figure 2 (lines 12–13).

Our method works by extracting from the sensor data a set of multi-dimensional boolean

attributes. Categorical attributes are easily reduced to this setting by introducing a boolean

characteristic attribute for each discrete category; numerical attributes can be reduced to it as

well by associating a boolean attribute to a range in some shared histogram. Each boolean

attribute is considered as a subset of the sensors (those for which there is a match). It strives

to select a sample that simultaneously minimizes the frequency error over all the attributes.

As the communication costs are the dominating factor in sensor networks, we present the

performance of the algorithm in number of messages. Assuming each sample value fits in

a single message, the sample size of each node is s, and the total number of nodes is k,

our algorithm performs a full sampling with O(ks) messages. The memory requirement of

the algorithm is O(m + sTavg) per node, based on storing the counts for each item (m such

13



items), weights for each record and the raw sample. Practically speaking, if we assume we are

using a dataset with 5 tuples per record (similar to our real world dataset described further in

Section 4.1), we need to use 6 integers (24 bytes) to store a record with its weight. Typically,

keeping a sample of 1, 000 records requires 24 Kbytes. The space required for the item counts

is flexible and independent from the sample size. We can use a higher granularity for item

counts to increase the accuracy of our sample, or if application permits, we can decrease the

granularity to save memory for additional sample values. For example, if we use 100 equi-

sized buckets per tuple to represent item counts, we need 2 Kbytes to store integer counts

for the items. Since a typical sensor node (ex. Berkeley Motes) currently has 128 Kbytes of

memory, we assume these are reasonable memory requirements.

4 Experiments

In this section, we now evaluate our DWS algorithm both on real and synthetic data, and

compare with the DIR sampling algorithm [30] based on sample accuracy and energy usage.

We demonstrate our work using the wireless sensor network simulator Shawn [21]. Shawn is

a discrete event simulator that allows us to test our algorithms on more nodes than the other

well known simulators.

We introduce the real world climate dataset in Section 4.1. In Section 4.2 we give the simula-

tion results of our deterministic algorithm (DWS), and compare the results to other algorithms

such as naive random sampling and Duplicate Insensitive Random (DIR) sampling. We show

that our algorithm has many advantages such as better sample quality and less communica-

tion rate compared to other methods. Finally, Section 4.3 demonstrates the performance of

our algorithm in answering typical SQL queries such as AVG, COUNT, SUM, MAX, etc.

over climate data set.

All energy usage calculations in the experiments are based on total number of sent and

received messages. Using the weights from [10], the received messages are weighted with
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1.2, the sent messages are weighted with 1.7 and energy usage for a node is the total. Each

tree building message is calculated as a single message. When exchanging samples between

nodes, each record is assumed to fit in exactly one message, also the weights of the whole

sample are assumed to fit in one message. These are reasonable assumptions, since there is

only limited number of sensors on each node, so the nodes can transfer all readings in one

single message.

4.1 Climate dataset

In our experiments, we used real world climate data from U.S. National Climatic Data Cen-

ter 1 . The dataset is the daily readings of precipitation, snow fall, snow amount, maximum

and minimum temperature values throughout the continental U.S., covering 1064 stations for

nearly the last 100 years. Since there are gaps in the station readings, we selected the maxi-

mum possible stations covering the exact same days. We gathered 227 stations having 4153

daily readings per station. The time period of the readings is presented in Figure 4 (left). The

black marked regions show the available days while the white regions show the gaps between

daily readings. The real locations of the 227 stations on the U.S. map 2 is also presented in

Figure 4 (right).

For our real data experiments, we simulated the sensors on the U.S. map (scaled) by associat-

ing each sensor with a station, and positioning 227 sensor nodes on a 60x25 region, according

to real station positions (latitude and longitude) on the map. The sensor node corresponding

to the station in Central Park, NY is selected as the sink. To preserve the time and location

correlation of data, we further fed each sensor with the exact data collected from the associ-

ated station, in original order. This way, each reading of a sensor corresponds to a daily data

of the associated station. The average values of the 5 tuple data are plotted in Figure 3.

1 http://www.ncdc.noaa.gov/oa/climate/research/ushcn/daily.html
2 Generated using tools from http://www.planiglobe.com
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Fig. 3. Average values of precipitation (top left), snow fall (top right), snow amount (center left),

maximum temperature (center right), and minimum temperature (bottom left).

Analyzing the climate data, we also realized that there exist many inconsistencies within the

data, because of measurement equipment failures in early days, and metric conversion errors.

We left these inconsistencies as is, since they present additional challenge for us in the dataset,

and these kind of perturbations in data are quite likely in real world sensor deployments.

4.2 Distributed Data Reduction

In this section, we give the simulation results of our Distributed Weighted Sampling algorithm

on sensor networks. The evaluation is based on two categories, the sample quality and the

energy usage. In order to demonstrate our work, we also include the naive random sampling

algorithm and a more advanced, Duplicate Insensitive Random (DIR) sampling algorithm

from Nath et al. [30].
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Fig. 4. Time period for weather data used in the simulations (left). Simulated U.S. area (60x25), and

227 sensor locations (right).

Two different datasets are used in the simulations, the climate dataset we introduced in Sec-

tion 4.1, as the real world dataset and the synthetic dataset (T10I6D1500K), which is an asso-

ciation rule dataset, created using the IBM data generator [19]. The synthetic dataset includes

1, 500, 000 records, each having different number of items. The average number of items in

each record is 10, the average number of itemsets is 6, and the total number of unique items is

1, 000. Items represent different sensor readings, and a record represents a total reading from

a sensor, with various items. Items represent discretized readings from sensors; for instance,

if we assume we have 10 sensors on a single node, and each sensor reading is discretized into

100 buckets (such as temperature), a record having items 30, 140, 550 means the readings for

the first sensor is 30, second one is 40, fifth one is 50 and there are no readings present for the

rest of the seven sensors.

For the simulations with the climate data, we used 227 nodes, each having a constant radio

range of 6 to ensure connectivity. The sink is placed on a predefined location as discussed in

Section 4.1. For synthetic dataset simulations, we again used 227 nodes, randomly deployed

in a 60x25 area, sink on the center.

Initially, for each algorithm, a data aggregation tree is created using the same algorithm as

in [26]. In naive random sampling, each node samples s records and forwards the samples
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Fig. 5. Results for real world climate dataset. (left) RMS results vs. sample size, (center) energy usage

vs. sample size, and (right) energy usage vs. sample quality.

Fig. 6. Results for synthetic dataset. (left) RMS results vs. sample size, (center) energy usage vs.

sample size, and (right) energy usage vs. sample quality.

up the tree without any further data reduction. At the end the sink has sk records from a

network of k nodes, which it further samples to generate a sample of size s. The details of

DIR algorithm are already discussed in Section 2, and our DWS algorithm in Section 3.

The simulation results show the averages of running DWS algorithm on synthetic dataset and

random algorithms (naive and DIR) on both datasets 100 times. Since climate dataset is a

static dataset, and DWS is a deterministic algorithm, DWS is ran once on this dataset.

Figure 5 (left) and Figure 6 (left) show the RMS error values of the final sample generated by

the algorithms for four different sample sizes 1000, 2000, 3000 and 4000 on both datasets.

From these figures we can see that our DWS algorithm generates up to a factor of 4 times

better quality samples than the other two algorithms, for both datasets.

Figure 5 (center) and Figure 6 (center) show the total energy used in the network while

generating the samples. The energy usage is calculated based on the total number of messages
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sent and received as described in Section 4. The energy usage results are scaled for a clear

presentation. As expected, the energy usage of DIR and DWS are the same, and up to a factor

of 20 times less than that of the naive random sampling.

To clearly compare DIR and DWS algorithms, in Figure 5 (right) and Figure 6 (right), we

generate two samples having the same quality based on RMS error values and compare the

energy used by both algorithms. Here, DIR algorithm still uses samples of sizes 1000, 2000,

3000 and 4000. The sample sizes of DWS algorithm are 268, 448, 532, and 600 for climate

dataset, and 314, 505, 685, and 766 for synthetic dataset. For both datasets, DIR algorithm

uses up to a factor of 6 times more energy than DWS algorithm. From the figures it is clear

that, we can have the same quality sample by using considerably less energy if we use our

DWS algorithm.

4.3 Example SQL queries

In this section, we evaluate answering SQL queries using the sample instead of the dataset

after the sample is extracted and stored in a DBMS outside of the network. We presented

sample quality results of our algorithm in the previous section. Those results were based

on RMS distance between the dataset and the sample. Now we compare the two algorithms

using AVG, MAX, SUM and COUNT queries. To achieve this goal, we use the real-world

climate dataset as our dataset of choice. As we keep the original order of the records in

this dataset, we created a single sample of size 4000 (sampling rate of 0.0036) using our

deterministic algorithm, and 10 samples of size 4000 using the DIR sampling algorithm (as

this is a randomized algorithm). Our deterministic algorithm on this static data always creates

the same sample, so it is not necessary to generate multiple samples. On the other hand, the

DIR algorithm is run multiple times to observe the average behavior of the algorithm, since

the samples generated are different for each run of the algorithm. When presenting the results

for the DIR algorithm, we present the min, max, mean and standard deviation of the errors

over the 10 samples.
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Samples are created once and all 4 queries are answered using these samples. The evaluation

metric is the error rate between the query results of the dataset and the sample, calculated as:

ErrorRate =

∣∣∣∣∣Resultdataset − Resultsample

Resultdataset

∣∣∣∣∣
In Figure 7, the horizontal lines are the DWS error rates, which is a single value per sample.

The vertical lines are the min-max values for DIR error rate, and the boxes show the mean and

the standard deviation values of the DIR error. Table 1 presents in detail the comparison of

the DWS and DIR algorithms. DWS errors are compared with the mean, min and max errors

of the DIR samples, and the results are presented as a ratio of DIRerror

DWSerror
for easy comparison.

Query 1

SELECT AVG(prcp), AVG(snow),

AVG(snwd), AVG(tmax), AVG(tmin)

FROM dataset

This is a query to test the effects of sampling algorithms on AVG queries. The query selects

the average values for all 5 tuples on both dataset and each sample, and Figure 7 (top left)

and Table 1 show the error rates of both algorithms. Looking at the average error rates, except

snow fall (snow), DWS algorithm outperforms DIR, sometimes by a factor of 24 times. Ad-

ditionally, DWS error rate is much smaller than the worst case DIR samples (sometimes by a

factor of 59 times), and close to the minimum error range of random samples. We would like

to state here that it is unlikely for a single random sample to accurately answer all queries,

the minimum error values for DIR are coming from different random samples, however we

use only one DWS sample and being close to the minimum bounds of DIR samples shows

how accurate our deterministic sample is.

Query 2

SELECT COUNT(*)
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FROM dataset

WHERE snow=0 AND snwd > 0

The second query finds the number of days when the snow fall amount is zero but there

exist snow on the ground. Our focus is to test COUNT type queries. We are also testing if

the correlation information between snow fall (snow) and snow amount on ground (snwd)

are preserved accurately in the samples. Figure 7 (top right) and Table 1 show the results

for this query. As we claimed, the deterministic algorithm is more accurate to represent the

correlation information in multi-dimensional count data. The deterministic sample is a factor

of 8 times better than the average, 1.3 times better than the best and 18 times better than the

worst random sample. Deterministic sample is the clear choice in this query as it outperforms

random samples in all aspects.

Query 3

SELECT MAX(prcp)

FROM dataset

WHERE tmax > 80

This is an outlier query testing the MAX value and also the correlation information between

precipitation (prcp) and maximum temperature (tmax). The result is presented in Figure

7 (bottom left) and Table 1. Both algorithms are quite inaccurate finding the MAX value.

Note that this result is typical, samples in general are not good for handling outliers. Detect-

ing and handling outliers is another research topic [5, 15], and requires more specific data

structures and techniques. We also would like to highlight that each of these specific tech-

niques solve a specific kind of outlier problem, and there is no ”one size fits all solution”.

Therefore all these techniques can be used additional to the sampling approach to generate a

more complete data reduction solution. For this reasons, we only would like to demonstrate

the shortcomings of sampling in general, and focus on finding samples for more general use.
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Query 4

SELECT SUM(snow)

FROM dataset

WHERE tmin < 0

The last one is to test SUM type of queries. Selects the total snow fall amount for days having

minimum temperature less than 0 degrees. The results are in Figure 7 (bottom right) and

Table 1. We can clearly see that, for this query, the deterministic sample is slightly worse

than the best random sample, and a factor of 5 times better than the average and also a factor

of 10 times better than the worst random sample. In this query also, deterministic sample is

much more accurate in keeping the correlation information between snow fall and minimum

temperature.

We tested our algorithms on real world dataset, using typical SQL queries. As expected the

sampling algorithms give accurate results for SUM, COUNT, AVG type of queries, and quite

inaccurate results when it comes to outlier queries such as MAX (see Figure 7 and Table 1).

We also observe that deterministic algorithm is much more accurate in keeping correlations

between items. The accuracy of the aggregation algorithm relates to the total energy usage of

the network (communication to extract the sample), such as a smaller deterministic sample is

more preferable to a bigger random sample, when both have the same accuracy. The results

in Figure 7 and Table 1 also demonstrate that once a sample is extracted from the sensor

network, it can be used to answer different types of queries (except outliers of course), with

reasonable accuracy.

5 Concluding Remarks and Future Work

We have presented a novel deterministic weighted sampling algorithm as a new aggregation

method for network of wireless sensors. Deterministic Weighted Sampling is simple enough

to not consume too many resources locally, and we validate through experiments that the
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Fig. 7. SQL query errors for deterministic sample and DIR samples. Results for Query-1 (top left),

Query-2 (top right), Query-3 (bottom left) and Query-4 (bottom right).

DIR/DWS Query-1

PRCP SNOW SNWD TMAX TMIN Query-2 Query-3 Query-4

MEAN 2.50 0.86 1.31 5.33 24.41 8.39 1.00 5.47

MIN 0.33 0.26 0.12 0.21 3.56 1.35 0.90 0.77

MAX 7.20 1.60 4.13 9.74 59.26 18.17 1.06 10.85
Table 1

Ratio of the mean, min and max error values of the DIR samples to the error values of DWS sample

for each query.

sample it provides is vastly superior to other distributed sampling methods exist for sensor

networks. Our algorithm is designed to work on arbitrary network topologies, by introducing

weights for samples and dynamically updating these weights throughout the sampling. DWS

by design effectively distributes the aggregation work over all the nodes by enabling each

node to generate a fixed sized sample and prevents any node from being a bottleneck.

One criticism of our approach is that loss of connection in the aggregation tree structure in-

duced by link or node failure can have drastic effects on the representativity of our sample,
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since an entire subtree may no longer be contributing to the sample. This can be handled

by allowing a multi-path aggregation structure [29, 30]. In the context of aggregation, how-

ever, one must then address the problem posed by the duplication of the data along these

multi-paths. The duplicate-insensitive solutions provided by Nath et al. [30] and Considine

et al. [11] do not extend to our deterministic algorithm, and we leave it as a matter for future

research to handle robust connectivity with our deterministic sampling algorithm.

Although our original design requires input from every sensor node, this can easily be reme-

died by incorporating other sparse sampling approaches. We note that our approach only

concerns how the samples are aggregated along the network. For instance, the contributing

nodes can be selected by another sampling approach such as the approximate uniform ran-

dom sampling of Bash et al. [6]. Likewise, the temporal frequency at which measurements

are updated at a node can be regulated by an adaptive process such as proposed by Jain and

Chang [20]. In any case, known compression methods can be applied to the in-network sam-

ple aggregation to further minimize communication costs [13, 14, 22].
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[2] H. Akcan, A. Astashyn, H. Brönnimann, and L. Bukhman. Sampling Multi-dimensional data. Technical Report TR-CIS-2006-01,

CIS Department, Polytechnic University, February 2006.
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