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This thesis addresses the topics of data reduction via sampling in both central

database environments, and wireless sensor networks, and GPS-free node localization in

wireless sensor networks. The first contribution of this thesis is a deterministic sampling

algorithm for sampling count data, which is common in data mining applications. We show

that our algorithm creates more accurate and higher quality samples compared to previous

work, and the samples it generates can be used as a surrogate for the original high volume

data.

Our second contribution is a deterministic weighted sampling algorithm that can

be used as a new data aggregation method for wireless sensor network data. The aggre-

gation algorithm shares similar ideas with our previous sampling algorithm. In order to

adapt to the sensor network environment, however, we designed our algorithm to perform

weighted sampling in a distributed manner. The weighted sampling design allows the al-

gorithm to work with any arbitrary network topology, while the distributed design divides
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the sampling work equally on all the sensor nodes in the network and prevents any node

from being a bottleneck (both with regards to CPU consumption, and communication).

We show that our aggregation algorithm generates samples of better quality than previous

algorithms, using far less energy.

Our last contribution is two GPS-free node localization algorithms, termed GPS-

free Directed Localization (GDL), and GPS & Compass-free Directed Localization (GCDL).

The importance of localization is apparent in mobile wireless sensor networks, where the

neighborhood changes frequently and knowledge about the neighbor positions is essential

for performing additional tasks such as aggregation or coherent movement. Our algorithms

perform localization without the need of Global Positioning System (GPS) or any other in-

frastructure (e.g., anchor points). These algorithms work with only local knowledge with-

out using historical data, and exploit mobility to perform localization. The memoryless

aspect of our algorithms avoids the accumulation error over time, which is essential in mo-

bility scenarios where coherent movement of a swarm of nodes is required. We show that

our algorithms do work even at high environmental noise levels, and keep a nice semi-rigid

network formation in mobility scenarios.
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Chapter 1

Introduction

In this thesis we investigate three different topics in computer science, and pro-

pose novel methods and algorithms. Each of these algorithms addresses a specific problem

in its domain that we present in detail in the following chapters. The presentation order

of these algorithms follow the chronological order of the work, as well as a logical chain

of ideas. Here we describe each of these algorithms briefly, while trying to highlight the

connections between each one of them.

Processing and extracting meaningful knowledge from count data is an important

problem in data mining. The volume of data is increasing dramatically as the data is gener-

ated by day-to-day activities such as market basket data, web clickstream data or network

data. Most mining and analysis algorithms require multiple passes over the data, which

requires extreme amounts of time. One solution to save time would be to use samples,

since sampling is a good surrogate for the data and the same sample can be used to answer

many kinds of queries. To address this problem, we developed a deterministic sampling

algorithm, DRS, that produces samples vastly superior to the previous deterministic and

random algorithms, both in sample quality and accuracy. In Chapter 2 we discuss the prob-

lem, related work and our algorithm in detail, also present experimental results comparing

our algorithm to previous work. The main product of this research is presented in [4, 3].

Having described the benefits of data reduction in central databases, we can ex-

tend this approach to wireless sensor networks, as a way of doing in network data aggre-
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gation. The processing capabilities of wireless sensor nodes enable to aggregate redundant

data to limit total data flow over the network. The main property of a good aggregation

algorithm is to extract the most representative data by using minimum resources. From this

point of view, sampling is a promising aggregation method as it represents the whole data,

and once extracted can be used to answer multiple kinds of queries (such as AVG, ME-

DIAN, SUM, COUNT, etc.), at no extra cost to the sensor network. Additionally, sampling

also preserves correlations between attributes of multi-dimensional data, which is quite

valuable for further data mining. In Chapter 3, we describe a distributed weighted sampling

algorithm to sample sensor network data and compare to an existing random sampling al-

gorithm, which is the only algorithm to work in this kind of setting. We perform popular

queries to evaluate our algorithm on a real world data set, which covers climate data in

the U.S. for the past 100 years. During testing, we focus on issues such as sample quality,

network longevity, energy and communication costs. The main product of this research is

presented in [5, 6].

In order to extend in-network data aggregation to mobile nodes, we need dynamic

aggregation structures to adapt to continuously changing topologies. One way to efficiently

perform this task is to have an easy way to access location information of mobile nodes,

therefore in Chapter 4 we describe two localization algorithms that suit this requirement.

An important problem in mobile ad-hoc wireless sensor networks is the localization of

individual nodes, i.e., each node’s awareness of its position relative to the network. We

introduce a variant of this problem directional localization where each node must be aware

of both its position and orientation relative to its neighbors. This variant is especially

relevant for the applications in which mobile nodes in a sensor network are required to

move in a collaborative manner. Using global positioning systems for localization in large

scale sensor networks is not cost effective and may be impractical in enclosed spaces.

On the other hand, a set of pre-existing anchors with globally known positions may not

always be available. To address these issues, in Chapter 4 we propose two algorithms

for directional node localization based on relative motion of neighboring nodes in an ad-
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hoc sensor network without an infrastructure of global positioning systems (GPS), anchor

points, or even mobile seeds with known locations. Our first algorithm, GPS-free Directed

Localization (GDL) assumes the availability of a digital compass on each sensor node. We

relax this requirement in our second algorithm termed GPS and Compass free Directed

Localization (GCDL). Through simulation studies, we demonstrate that our algorithms

scale well for large numbers of nodes and provide convergent localization over time, even

with errors introduced by motion actuators and distance measurements. Furthermore, based

on our localization algorithms, we introduce mechanisms to preserve network formation

during directed mobility in sensor networks, which is important for applications that require

good area coverage and coherent movement. Our simulations confirm that, in a number of

realistic scenarios, our algorithms provide for a mobile sensor network that preserves its

formation over time, irrespective of speed. Also the on demand behavior of our algorithms

avoids storing any long term historical movement information, which keeps our localization

algorithms free from cumulative errors. The main product of this research is presented in

[8, 9].
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Chapter 2

Sampling Algorithms For Count Data

Count data serve as the input for an important class of online analytical process-

ing (OLAP) tasks, including association rule mining[2] and data cube online exploration[35].

These data are often stored in databases for further processing. However, the volume of data

has become so huge that mining and analysis algorithms that require several passes over

the data are becoming prohibitively expensive. Sometimes, it is not even feasible (or de-

sirable) to store it in its entirety, e.g., with network traffic data. In that case, the data must

be processed as a stream. For most OLAP tasks, exact counts are not required and an ap-

proximate representation is appropriate, motivating an approach called data reduction[12].

A similar trend was observed in traditional database management systems (DBMS) where

exact results taking too long led to approximate query answering as an alternative[40, 33].

A general data reduction approach that scales well with the data is sampling. The

data stream community also uses sampling as a representative for streaming data [10, 46].

Even though sampling is widely used for analyzing data, the use of random samples can

lead to unsatisfactory results. For instance, samples may not accurately represent the entire

data due to fluctuations in the random process. This difficulty is particularly apparent for

small sample sizes and bypassing it requires further engineering.

The main product of this research consists of a deterministic sampling algorithm,

named below DRS, to find a sample S from a dataset D which optimizes the root mean

square (RMS) error of the frequency vector of items over the sample (when compared to
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the original frequency vector of items in D). DRS is a clear improvement over SRS (sim-

ple random sample) and other more specialized deterministic sampling algorithms such as

FAST[22] and EASE[16]. The samples our algorithm produces can be used as surrogate

for the original data, for various purposes such as query optimization, approximate query

answering[33, 40], or further data mining (e.g., building decision trees or iceberg cubes).

In this latter context, the items represent all the values of all the attributes in the DBMS

and one wants to maintain, for each table, a sample which is representative for every at-

tribute simultaneously. We assume here categorical attributes—numerical attributes can be

discretized, e.g., by using histograms and creating a category for each bucket.

In Section 2.1 we talk about the previous work. Later, in Section 2.2 we present

our sampling algorithm, Deterministic Reservoir Sampling (DRS), for deterministically

sampling count data. In Section 2.3 we evaluate DRS on several real-world and synthetic

datasets, with various criteria and settings. Finally, in Section 2.4 we finish with the con-

cluding remarks.

Our Contributions

• We present a deterministic sampling algorithm: DRS, to sample count data (tabular

or streaming).

• Our algorithm generates samples with better accuracy and quality compared to the

previous algorithms (EASE and SRS).

• DRS improves on previous algorithms both in run-time and memory footprint.

• We perform extensive simulations with synthetic and real-world datasets under vari-

ous settings, and demonstrate the superiority of our algorithm.
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2.1 Related work

The survey by Olken and Rotem[60] gives an overview of random sampling al-

gorithms in databases. Sampling is discussed and compared against other data reduction

methods in the NJ Data Reduction Report[12]. In addition to sampling, a huge literature

is available on histograms[37] and wavelet decompositions as data reduction methods, and

we do not attempt to survey it here. We note however that sampling provides a general-

purpose reduction method which simultaneously applies to a wide range of applications.

Moreover, the benefits of sampling vs. other data reduction methods are increased with

multi-dimensional data: the larger the dimension, the more compact sampling becomes vs.,

e.g., multi-dimensional histograms or wavelet decompositions[12]. Also, sampling retains

the relations and correlations between the dimensions, which may be lost by histograms or

other reduction techniques. This latter point is important for data mining and analysis.

Zaki et al.[70] state that simple random sampling can reduce the I/O cost and

computation time for association rule mining. Toivonen[66] propose a sampling algorithm

that generates candidate itemsets using a large enough random sample, and verifies these

itemsets with another full database scan. Instead of a static sample, John and Langley[45]

use a dynamic sample, where the size is selected by how much the sample represents the

data, based on the application. The FAST algorithm introduced by Chen et al.[22] creates a

deterministic sample from a relatively large initial random sample by trimming or growing

a sample according to a local optimization criterion. The EASE algorithm by Brönnimann

et al.[16] again uses a relatively large sample and creates a deterministic sample by per-

forming consecutive halving rounds on the sample. EASE algorithm keeps penalty func-

tions for each item per each separate halving round. Each transaction has to pass the test at

each level in order to be added to the sample. The penalties change based on the accept or

reject decision of the transaction, and the goal is to generate a sample having item supports

as close as possible to those in the dataset. Multiple halving rounds per transaction and the

penalty functions used for each round introduces additional complexity to EASE compared
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to Biased-L2. The Biased-L2 algorithm uses ideas similar to EASE based on discrepancy

theory[21], but samples the dataset without introducing halving rounds and improves on the

run-time and memory requirements, as well as the sample quality and accuracy. Biased-L2

algorithm is generic for any discretized data, and in [7] it is applied to sampling geometric

point data for range counting applications.

The main difference between DRS and FAST is that DRS keeps a smaller sample

in memory, examines each transaction only once, and it is suitable to handle streaming data.

DRS algorithm uses a cost function based on RMS distance which is incrementally updated

by changes to the sample. In this work we only give the incremental formulas specific to our

case, where the sample size does not change by updates. Additional incremental formulas

for various distance functions are presented in [15]. As the sample size can be preset

exactly, DRS does not have accuracy problems caused by the halving rounds of EASE.

Johnson et al.[46] suggest that, for cases when the stream size is unknown, it is useful to

keep a fixed-sized sample. Since in practice most stream sizes are unknown, this can be

best done by allowing the algorithms to dynamically remove transactions from the sample,

as in reservoir sampling[67] and DRS.

Gibbons et al.[31] propose concise sampling and introduce algorithms to in-

crementally update a sample for any sequence of deletions and insertions. While con-

cise sample dramatically reduces memory footprint, it works for single attribute sampling,

lacking the ability to give any correlation between attributes, which is desirable for multi-

dimensional data.

Vitter[67] introduces reservoir sampling, which allows random sampling of stream-

ing data. Reservoir sampling produces a sample of quality identical to SRS, but does not

examine all the data. Whenever a new record is selected, it evicts a random record. In

contrast, DRS adapts to changes in distribution by deterministically selecting the worst

record to evict. Gibbons et al.[32] use reservoir sampling as a backing sample to keep the

histograms up to date under insertions and future deletions.

In [46] different approximation algorithms are discussed including Reservoir
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Sampling[67], Heavy Hitters algorithm[58], Min-Hash Computation[27] and Subset-Sum

sampling[30]. Among these we only compare our algorithms with Reservoir Sampling

(random sampling in general), since the rest of the algorithms are tailored for specific ap-

plications.

2.2 Deterministic sampling algorithms

In this section we first describe the notation used, and then present our determin-

istic sampling algorithm: Deterministic Reservoir Sampling, in Section 2.2.2.

2.2.1 Notation

Let D denote the database of interest, d = |D| the number of transactions, S a

deterministic sample drawn from D, and s = |S| its number of transactions. We denote

by I the set of all items that appear in D, by m the total number of such items, and by

size(j) the number of items appearing in a single transaction j ∈ D. We let Tavg denote

the average number of items in a transaction, so that dTavg denotes the total size of D (as

counted by a complete item per transaction enumeration).

In the context of association rule mining, an itemset is a subset of I , and we

denote by I(D) the set of all itemsets that appear in D; a set of items A is an element of

I(D) if and only if the items in A appear jointly in at least one transaction j ∈ D. A k-

itemset is an itemset with k items, and their collection is denoted by I‖(D); in particular the

0-itemset is the empty set (contained in all the transactions) and the 1-itemsets are simply

the original items. Thus I(D) = ∪‖≥′I‖(D). The itemsets over a sample S ⊆ D are

I(S) ⊆ I(D), and I‖(S) is defined similarly.

For a set T of transactions and an itemset A ⊆ I , we let n(A; T ) be the number

of transactions in T that contain A and |T | the total number of transactions in T . Then

the support of A in T is given by f(A; T ) = n(A; T )/|T |. In particular, f(A; D) =

n(A; D)/|D| and f(A; S) = n(A; S)/|S|. Given a threshold t > 0, an item is frequent in
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D (resp. in S) if its support in D (resp. S) is no less than t.

The distance between two sets D and S with respect to the 1-itemset frequencies

can be computed via the discrepancy of D and S, defined as

Dist∞(D, S) = max
A∈I

∣∣∣f(A, D)− f(A, S)
∣∣∣. (2.1)

A sample S such that Dist∞(D, S) ≤ ε is called an ε-approximation. Other ways to

measure the distance of a sample are via the L1-norm or the L2-norm (also called ‘root-

mean-square’ - RMS),

Dist1(D, S) =
∑
A∈I

∣∣∣f(A, D)− f(A, S)
∣∣∣, (2.2)

Dist2(D, S) =

√∑
A∈I

(f(A, D)− f(A, S))2. (2.3)

In order to measure the accuracy of the sample S for evaluating frequent itemset

mining, as in [22, 16] the following measure is used:

Accuracy(S) = 1− |L(D) \ L(S)|+ |L(S) \ L(D)|
|L(S)|+ |L(D)|

, (2.4)

where L(D) and L(S) represent the number of frequent itemsets in dataset and

sample. L(D) \ L(S) represents the number of itemsets exist in dataset but not in sample,

and L(S) \ L(D) the other way around.

2.2.2 Deterministic Reservoir Sampling (DRS)

In this section, we present Deterministic Reservoir Sampling algorithm. The

main idea is to maintain a sample of constant size s and periodically add a transaction

while evicting another. The choice of transactions is computed in order to keep a distance

function as small as possible (here, we present the algorithm using Dist2). In particular,

it differs from EASE and Biased-L2 by its ability to not only add new transactions to

the sample but also remove undesired transactions. As we will show, this ability makes the

sample more robust to changes of the distribution in the streaming or tabular data scenarios.
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The algorithm maintains the worst transaction W in the sample, i.e., the one

whose removal from S decreases Dist2(D, S) the most. An update by T consists of replac-

ing W by some transaction T . The parameter k is used to control the number of updates as

follows: The algorithm scans the consecutive transactions in blocks of size k and for each

block, computes the best transaction T for an update, i.e., such that Dist2(D, (S \ {W})∪

{T}) is minimized. One important observation here is that even replacing W by the best

T may not decrease the cost function in some situations. In this case, the sample is kept

unchanged for this block.

The full algorithm is presented in Figure 2.1. This version of the algorithm works

in a single pass and updates the supports of items on the fly, both in the dataset and in

the sample. The only requirement for single pass is that the size of the dataset must be

known in advance, in order to compute the Dist2 function. For the streaming case, or other

cases where we do not know the size of the dataset in advance, a slight modification to the

algorithm is possible, that starts with an expected dataset size and zero frequencies, and

gradually increases them during run-time.

Since at each update, only one transaction is added and another removed from

the sample, limited number of items on average are affected from this change, allowing us

to easily update the penalty function incrementally. The difference in penalty function after

adding transaction T is:

∆T =
size(T)

s2
+

2

s

∑
i∈T

(
f(Ai, SDRS)− f(Ai, D)

)
, (2.5)

Similarly, the difference after removing transaction W is

∆W =
size(W)

s2
− 2

s

∑
j∈W

(
f(Aj, SDRS)− f(Aj, D)

)
, (2.6)

By adding these two differences together, we can find the total difference caused by the
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DRS (D, k)

1: SDRS ← first transactions of D

2: N ← 0; C ← Dist2(D, SDRS)

3: W ← FINDWORSE(D, SDRS)

4: Cmin ←∞; Tmin ← ∅

5: for each transaction j in D do

6: N ← N + 1

7: Cnew = Dist2(D, SDRS ∪ {j} \ {W})

8: if Cnew < Cmin then

9: Cmin ← Cnew; Tmin ← j

10: end if

11: if N ≡ 0 mod k then

12: {periodical updates, after every k transactions}

13: if Cmin < C then

14: SDRS ← SDRS ∪ {Tmin} \ {W}

15: C ← Cmin

16: W ← FINDWORSE(D, SDRS)

17: end if

18: Cmin ←∞; Tmin ← ∅

19: end if

20: end for

21: return SDRS

FINDWORSE (D, SDRS)

1: Cw ←∞; W ← ∅

2: for each transaction j in SDRS do

3: if Dist2(D, SDRS \ {j}) < Cw then

4: W ← j; Cw ← Dist2(D, SDRS \ {j})

5: end if

6: end for

7: return W

Figure 2.1: The DRS algorithm
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update since the sample size doesn’t change:

Dist2(D, SDRS ∪ {T} \ {W}) =
size(T) + size(W)

s2

+
2

s

∑
i∈T\W

(
f(Ai, SDRS)− f(Ai, D)

)
− 2

s

∑
j∈W\T

(
f(Aj, SDRS)− f(Aj, D)

)
. (2.7)

Based on Equation (2.7) the computation can be done in time O(Tavg) per trans-

action. Thus the run-time cost of one iteration of the loop is O(Tavg) except if it triggers an

update, in which case it becomes O(sTavg) since each transaction in the sample needs to

be re-examined to find the new worse transaction. In order to describe the overall running

time, we consider the choice of k. A choice of k = 1 means that we update in a totally

greedy fashion (steepest descent), which might perform well in terms of error but might be

very expensive in terms of run-time. A choice of k = d means no updates. In between these

extremes, selecting a bigger value will decrease the number of updates on the sample and

speed up the sampling process, but decrease the quality of the sample. Selecting a smaller

value will slow down the process while increasing the quality of the sample. Ultimately,

we should pick the smallest value of k which affords a reasonable running time. Follow-

ing the analogy with reservoir sampling[67], we could hope that the number of updates is

O(log d/s), yet our updates are dictated by a comparatively more complex process, and

this hope is not borne out by the experiments. Instead, the actual bounds seems closer to

the trivial upper bound of d/k. A good compromise seems k = s/c for some constant

c > 0, which implies a total number of updates which is O(d/s) and thus a total run-time

of O(dTavg). Empirical results are given in the experiments section, showing the effect of

k on the overall sample quality and accuracy.

As for memory requirements, DRS needs to store the frequency counts of every

item separately in D and SDRS , as well as the sample, hence has a space complexity of

O(m + sTavg), which is equivalent to that of Biased-L2 (since finally s = αd).
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Dataset T5I3D100K T10I6D100K T50I10D100K BMS1

NoOfTrans 100000 100000 100000 59602

NoOfItems 1000 1000 1000 497

AvgTransSize 5 10 50 2.5

Apr.Supp 0.4 0.4 0.75 0.3

1-itemsets 460 633 832 225

2-itemsets 84 774 45352 169

3-itemsets 39 445 40241 39

4-itemsets 18 378 45140 0

Figure 2.2: Dataset parameters

2.3 Experimental results

In this section, we compare DRS with the previous ones on various datasets, and

show the superiority of our algorithm in terms of sample quality and accuracy. We also

highlight additional features of the DRS algorithm using tailored experiments.

2.3.1 Datasets used

The datasets used in our experiments are three synthetic datasets from IBM[65]

(T5I3D100K, T10I6D100K, T50I10D100K), and one real-world clickstream dataset (BMS-

WebView-1 or BMS1)[48]. Both types of datasets are count datasets, with variable length

transaction sizes. The detailed parameter information of each dataset is listed in Figure 2.2.

The reason for our choice of datasets is to have different maximum lengths of a transac-

tion and of an itemset, in order to evaluate the dependency on these parameters and make

sure the results don’t differ too much. BMS1 acts as the real-world/typical control data set.

More detailed information about the BMS1 dataset can be found in[48].
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2.3.2 Sampling count data

In this section, we compare the results of the simple random sample (SRS),

EASE, Biased-L2, and DRS algorithms on the association rule datasets. The compari-

son is based on the quality and accuracy of the sample, given the cost function in Eq. (2.3)

and the accuracy function in Eq. (2.4).

Figure 2.3 plots the RMS error, and Figure 2.4 the accuracy results of SRS,

EASE, Biased-L2, and DRS on all four datasets. The algorithms are run with sampling

rates of 0.003, 0.007, 0.015, 0.03, and 0.062, or the sample size equivalent of them, based

on the size of the dataset. For synthetic datasets, the algorithms are run 50 times with a

random shuffle of D, and the average is calculated. For the real-world dataset (BMS1), the

original order of transactions is kept, and deterministic algorithms (EASE, Biased-L2, and

DRS) are run once, while random sampling algorithm (SRS) is again run 50 times.

Figure 2.51 presents the ratio comparison of results in Figure 2.3 relative to SRS

for each dataset. From these results, we can say that the sample quality of DRS and Biased-

L2 are superior compared to the results of EASE and SRS. In terms of RMS error, on

average, DRS is a factor of 14 times and Biased-L2 is a factor of 12 times better than

EASE on the real-world dataset, and a factor of 2 times better on synthetic datasets. On

average, DRS is also a factor of 6 times better than SRS on all datasets.

In order to compare the accuracy of the samples, we use the Apriori[2] algorithm

to generate association rules both for the dataset and the samples. Later, we use Equation

(2.4) to calculate accuracies. Figure 2.4 plots the accuracy results of SRS, EASE, Biased-

L2 and DRS on all datasets. In addition, Figure 2.61 presents the average ratio comparison

of the accuracy results for each dataset, based on the SRS accuracy for each sampling rate.

From the figures we can say that on average, DRS is a factor of 12, and Biased-L2 is a

factor of 8 times better than EASE on real-world dataset. Also on this real-world dataset,

DRS is a factor of 5 times, and Biased-L2 is a factor of 4 times better than SRS algorithm.

1EASE algorithm was unable to generate the expected sample sizes on BMS1 dataset, the accuracy and
quality ratio values of EASE algorithm on this dataset are linearly estimated based on existing data.
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Figure 2.4: Accuracies of SRS, EASE, Biased-L2, and DRS for four datasets (BMS1, T5,
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Algorithm/Sampling Rate 0.062 0.03 0.015 0.007

EASE 1.03 1.10 1.13 1.11

Biased-EA 0.21 0.20 0.20 0.20

Biased-L2 0.18 0.20 0.19 0.19

DRS 52.2 21.1 9.6 4.9

Figure 2.7: Time spent per transactions (in milliseconds) for each algorithm, with various

sampling rates.

On synthetic datasets the differences in accuracy results are slim, but DRS consistently

more accurate than SRS. Looking at the accuracy results in Figure 2.4, we see that in some

datasets, up to 90% accuracy is obtained by using only 3% of the dataset. This result

is especially important when mining huge amounts of data. For applications where 90%

accuracy is sufficient, instead of running the mining algorithms on the whole data, which

can take even days for some datasets, a sample can be used, which is much smaller and

easier to handle.

Although the EASE algorithm gives comparable accuracy bounds on synthetic

datasets, it performs poorly on the real-world dataset (BMS1), both for sample quality and

accuracy, see Figure 2.3–2.6 (leftmost). The result is not surprising since the real-world

dataset is well known for this kind of behavior, such as, the owners of the dataset claim that

most algorithms which work with synthetic datasets do not work well with this real-world

dataset[48]. This is the main reason we selected this particular dataset as our real-world

control dataset. We want to highlight the fact that DRS work perfectly both on synthetic

and real-world datasets. On top of this, the major improvements of the present work over

EASE are the running time and memory footprint of our new algorithm.

Finally, we compare CPU times for the algorithms we presented in this section.

Figure 2.7 presents the average time spent in milliseconds to process one transaction for

each algorithm on a Pentium IV 3Ghz computer. Biased-EA and Biased-L2 are up to
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5 times faster compared to EASE. The main reason for this speed-up is the single pass

structure of these algorithms compared to logarithmic halving steps in EASE. The CPU

time of DRS various with the sample size, as expected. More details about the running

time of DRS is presented below in Section ”Changing the update rate”.

2.3.3 Extensions to DRS algorithm

In the previous section we presented the accuracy and quality results of the sam-

ples generated by the DRS algorithm. In this section, we further present the additional

properties of the DRS algorithm; using k parameter to control the run-time performance

and the fast-recovery property of the algorithm under distribution or sample size changes.

Changing the update rate:

In Figure 2.8, the effect of k on the sample quality of the DRS algorithm is presented. The

figure plots the RMS errors of using different values of k on the BMS1 dataset. As the

figure is plotted for different sample sizes, the results are given as the ratio of the sample

size over k. We can see from the figure that the sample quality is similar to a random sample

for bigger values of k (less updates), and quality increases for smaller values of k (frequent
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Figure 2.9: Accuracy and CPU time vs. sample rate for Biased-L2 and DRS with different

k values (left, right).

updates). Figure 2.9 plots the accuracy result and the CPU time of the Biased-L2 and

DRS algorithms for various sampling rates. The plots clearly show that the k parameter

in DRS can be used effectively to control the trade-off between the running time of the

algorithm and the quality/accuracy of the sample. For example, for sampling rate of 0.062,

we can achieve up to a factor of 3 times speed-up in run-time by selecting k = 25, without

sacrificing much from the accuracy. The effect of k on the runtime of DRS can also be seen

in Figure 2.12. From this figure we can also observe that k = 25 is a reasonable choice,

since larger k values do not significantly decrease the algorithm runtime any further.

Changing the sample size:

In the DRS algorithm we can change the sample size at any time of the sampling process,

quite easily. When the sample size is increased from s1 to s2, s1 < s2, there occurs a gap

in the sample of (s2 − s1) transactions. The next transactions from the dataset are added

to the sample without any evaluation (in the most basic case). Similarly, when the sample

size is decreased from s1 to s3, s1 > s3, we trim (s1− s3) transactions out of the sample by

finding the worst transaction in the sample and removing it without replacement, enough

times. When adding or removing transactions, the item counts of the sample are updated
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Figure 2.10: RMS error vs. number of elements processed, while (left) increasing and

(right) decreasing the sample size suddenly after 30 000 transactions.

accordingly. After the sample reaches the desired size, it is used as the initial sample for

DRS, and the sampling process resumes. Although theoretically it is hard to say how much

changing the sample size on the fly affects the quality of the sample, empirical results show

that this can cause a major increase in the cost function, but after a very short recovery

period, the sample is as good as a deterministic sample again. In other words, once the

DRS algorithm starts running again, the cost function decreases dramatically in a very

short period of time.

The experiments in Figure 2.10 and Figure 2.11 are run on the real world dataset

BMS1, while processing the transactions in the original order to prevent introducing free

randomness in the dataset. In Figure 2.10 (left), the effect of increasing the sample size

is presented. The lower line plots the trace of sampling the BMS1 dataset with a sample

size of 500. The upper line plots the trace of sampling the same dataset with a sample size

of 150 until the 30 000th transaction, after which the sampling rate is changed to target

a final sample size of 500, which causes the jump in the RMS error. After a number of

transactions, the RMS error function converges to the value it would get for a sample size

of 500. One important point to note here is that, when adding new transactions to the

sample we did not use any evaluation criteria, just to demonstrate the effect on the RMS
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error value. One way to add more transactions is to make the whole process greedy, such

that the peak caused by the sample size change would be lower, and the sample would

converge gradually. Figure 2.10 (right) similarly shows the plot of decreasing the sample

size from 500 to 400, and shows that the final RMS error value converges to the value it

would get for a sample of size 400 (from the first transaction). These results show us that

the DRS sample size can be changed at any time during sampling, and the jump in the

error function can be compensated for with the RMS error converging to its normal value

for the new sampling rate, after examining only a small number of transactions (typically

proportional to the size of the sample). Note that the convergence for Biased-L2 is much

slower, which clearly shows the better recovery of DRS after a sudden change in sample

size.

Another important outcome of the fast convergence of DRS is that we can take a

random sample from the dataset at any time, use this sample as initial sample for DRS, and

convert this random sample to a new sample after only examining O(s) new transactions

from the dataset, yielding the expected RMS error of a deterministic sample for that new

sample size. Figure 2.11 shows the plot of three different sampling processes. The dataset

BMS1 is sampled three times with sampling rates of 0.043, 0.0042, and 0.0019 (sample
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Figure 2.12: Effect of changing the k parameter on the speed of the DRS algorithm.

Synthetic dataset (T10I6D100K) (left), and real-world dataset (BMS1) (right). For both

datasets selecting k ≈ 25 seems quite reasonable. The time spend per transaction on each

dataset varies with the average number of items per transaction. The synthetic dataset we

test has more items per transaction on average than the real-world (BMS1) dataset, which

increases the time per transaction on the synthetic dataset.

sizes of 2615, 253, and 116 respectively). Also, after examining 50 000 transactions, a

simple random sample is created for each case, having exactly the same sizes as 2615, 253,

and 116. The plots after transaction 50 000 show the results of using these random samples

as initial samples for our algorithm. Clearly, after only examining a small number of new

transactions, the RMS errors of the samples converge to the expected value. In the end, it

makes little to no difference if we sample the whole dataset one transaction at a time, or if

we get a random sample at any time and convert it using our DRS algorithm.

To sum up the experiments in this section, in terms of sample accuracy and qual-

ity, both Biased-L2 and DRS outperform EASE and SRS. Biased-L2 is our algorithm of

choice if speed is important, and DRS is our choice if either the sample size must be cho-

sen exactly, or if the sampling rate and/or data distribution changes frequently and fast

convergence is needed.
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2.4 Concluding remarks

In this part of the thesis we have presented DRS, a deterministic sampling al-

gorithm. DRS is designed to sample count data, which is quite common for data mining

applications, such as market basket data, web clickstream data and network data. Our new

algorithm improves on previous algorithms both in run-time and memory footprint. Fur-

thermore, by conducting extensive simulations on various synthetic and real-world datasets,

we have shown that DRS algorithm generates samples with better accuracy and quality

compared to the previous algorithms (SRS and EASE). For sudden changes in the distri-

bution, DRS has the ability to remove under- or over-sampled transactions if a more suit-

able one is found during sampling. In the previous algorithms surveyed and in Biased-L2,

transactions added in the early stages of sampling affect the overall quality of the sample

especially if the distribution of the dataset changes; DRS is not subject to this limitation.
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Chapter 3

Distributed Sampling Algorithms For Sensor Networks

We focus on sampling data from a set of sensor nodes linked by a network and

consider the problem of extracting the sample from the network to a central DBMS and

later querying it to find answers to conditions inside the sensor network. These queries

may be based on snapshots, or may be continuous. The data collected by the sensors is

usually highly redundant, and thus one need not collect and process all of it, approximate

query results are usually sufficient. Hence, substantial savings may be obtained by either

aggregating or processing the data in-network, or by obtaining a much smaller but repre-

sentative sample which can then be processed by a centralized more powerful unit.

One particular kind of data we focus on is the multi-dimensional count data that

arises fairly often from market basket data, census-like applications, or in the context of

sensor networks, from monitoring several parameters of an environment. For instance,

Mainwaring et al.[56] engineer Mica Weather Boards to record temperature, humidity, and

barometric pressure. Additional components like photo-resistor and infrared thermopile

sensors can join forces to infer other parameters such as cloud cover, altitude or wind

speed. Levon[52] is developing a biosensor array for detecting biological warfare agents;

this array can report and monitor the presence of a number of chemical compounds, and

the data is inherently multi-dimensional as we are not only interested in each parameter but

also in their interaction. In this context, one may desire to investigate possible correlations,
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to discover that certain combination of values occur more often than others if certain con-

ditions are met (association rules), or to construct a data cube (or iceberg cube if only the

most significant statistical data is desired). Note that outliers are also of potential interest,

especially to act as triggers; they can be monitored using completely different techniques,

so we do not consider those here, rather we focus on extracting the most significant statis-

tical trends.

We contend that collecting and maintaining a representative sample of the data

from the sensor network is a promising data aggregation solution because samples, un-

like other synopsis structures, are general-purpose and can be used as a surrogate for the

(expensive) network[12]. In other domains, sampling has long been used to answer many

aggregation queries approximately[33] such as MEDIAN, AVG, COUNT, and MODE. It

also has been successfully used to speed up data mining tasks such as finding correlations

and association rules[22, 16, 4, 66, 70], and iceberg cubes[58, 4]. In the context of sensor

networks, using sampling as a surrogate can be most appropriate for this kind of global

analysis, because the whole data must be available to find correlations, and gathering the

whole data in a centralized unit requires prohibitive communication costs. Tailored ag-

gregation procedures have better accuracy, but each requires its own communication costs,

while the sample is computed and maintained once and enables any number of a wide

range of queries out-of-network with still reasonable accuracy at no cost to the network.

Moreover, an approximate answer often suffices and more precise results can be obtained

otherwise by ‘drilling down’ in the network in an OLAP fashion.

Although random sampling is an easy and intuitive way to answer approximate

queries, random deviations in the sampling process, however, make random sampling

somewhat less precise and unpredictable. In the context of transactional data sets, a sim-

ple deterministic procedure (EASE [16], refined in Biased-L2 [4]) produces samples with

errors consistently an order of magnitude better than that of a random sample. In the con-

text of sensor networks, we find that this translates into order-of-magnitude communication

and energy savings, namely, for an equivalent RMS error, our deterministic sample is much
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smaller thus requires lower energy costs (including extra communication requirements of

the algorithm). Alternatively, for the same resource spending, one gets a much more accu-

rate picture.

We also would like to mention a few applications of our sampling scheme. By

integrating spatial regions as categorical attributes, our sample will try to be representative

in space as well as for the measurement. That is, it will have the same spatial distribution

as the original set of sensors, at least at the resolution of regions. Note that the regions

may overlap. The regions of a hierarchical subdivision such as quadtrees or hierarchical

uniform grids may be desirable to ensure scale-independence, therefore regions adapted to

a natural decomposition such as counties for census data may sometimes be more appropri-

ate. In monitoring homeland security chemical threats, being able to detect the emergence

and geographic spread of a hostile chemical compound[52] involves combining geographic

information with that of the biosensor array to ensure that environmental conditions are ac-

curately sampled. For this to be accurate, the sampling rates (both temporal and spatial)

must be adjustable at the node level, which can easily be achieved by tweaking the weights

in our weighted sampling approach.

The rest of this chapter is organized as follows: We give an overview of the pre-

vious work in Section 3.1. In Section 3.2, we present an arbitrary aggregation structure for

sampling, discuss the motivation for weighted sampling in this kind of aggregation struc-

tures and finally present our deterministic sampling algorithm. In Section 3.3 we introduce

the real world climate dataset we used in our simulations, and then experimentally study

our algorithm by comparing to existing sampling algorithms, while focusing on issues such

as sample quality, energy and communication costs. Finally, we conclude in Section 3.4

with both discussion and future work.
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Our Contributions

Our main contributions in this chapter are:

• We propose a novel deterministic weighted sampling algorithm as a new aggrega-

tion method for sensor network data. To the best of our knowledge, this is the first

distributed deterministic sampling algorithm for sensor networks.

• Our algorithm weights the samples and adjusts the weights dynamically, which en-

ables to work on networks organized in any arbitrary topology.

• In our deterministic weighted sampling algorithm, data aggregation via sampling is

done on all (participating) nodes, which equally distributes sampling work over the

network, and prevents any node from being a bottleneck (both CPU and communi-

cation based).

3.1 Related work

In this section, we give an overview of the previous work and state the relations

and differences compared to our work.

In a preliminary version[5], we present the basic algorithm and experiments with

the random dataset. In this version, we further extend on the previous work both in terms

of the algorithm details and experiments.

In [4], Biased-L2 is presented, which improves on EASE[16, 15] to determinis-

tically sample streaming count data. Both algorithms sample by introducing penalty func-

tions using the support of each item. Each penalty function is minimized when the item

frequency over the sample equals that over the whole data set, and increases sharply when

item is under- or over-sampled. EASE reduces the number of records in the sample by

applying halving steps on the sample, while Biased-L2 is a single pass algorithm that gives

a final decision for adding the record to the sample or not by examining the record only
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once. EASE and Biased-L2 are designed to work on centralized database settings, where

data is stored in a database or comes from a single stream, so they are not directly applica-

ble to sensor network settings, where data is distributed and network topology is unknown.

We propose a novel deterministic sampling algorithm that uses similar ideas to Biased-L2,

but extended to handle weights and distributed sources, essential for sensor network data

extraction.

The research on stream processing is highly relevant to our work. Stream database

systems aim to process data streams as fast as possible while avoiding the need to store the

entire data. In most cases, this results in approximate answers to the queries. Aqua[33]

uses an approximation engine to quickly answer typical aggregate queries while incremen-

tally refining the result with the actual database results. Borealis[1] is a high-performance,

low-latency distributed stream processing engine. In addition to typical snapshot queries,

STREAM[46] queries in continuous fashion, which naturally adapts to stream data. Con-

tinuous queries are also used in sensor network databases TinyDB[55] and COUGAR[68].

Recently, data aggregation in sensor networks attracted great attention from the

research community[54, 68, 38, 53]. In sensor networks, where the in-network process-

ing of various aggregate queries is paramount, data aggregation inside the network could

drastically reduce the communication cost (consequently, prolong the battery life) and en-

sure the desired bounds on the quality of data. Madden et al.[54] propose an effective

aggregation tree (TAG-tree), which works on well defined epochs, and reduces the com-

munication by using an optimum tree structure. We also use a tree generation algorithm

similar to TAG-tree, where iterative broadcast from sink to the rest of the network is used

to create a tree that covers the whole network. COUGAR[68] also creates aggregation trees

similar to TAG. Sharaf et al.[63] propose more efficient ways of aggregation by exploiting

group by queries, which works on top of TAG and COUGAR aggregation. In addition

to tree aggregation, cluster-based aggregation approaches have also been investigated in

LEACH[38, 39] and PEGASIS[53]. In LEACH[38], randomly selected cluster heads per-

form aggregation, and communicate directly with the base station to reduce energy use,



33

while in LEACH-C[39] the base station broadcasts the cluster head assignments, further

improving the energy use of the network. PEGASIS[53] selects the cluster head by or-

ganizing nodes in a chain. Using only one cluster head at a time conserves energy at the

expense of introducing latency issues.

Although the tree structure is optimal for communication, it is not robust enough

for sensor networks. The robustness issue led researchers to propose a DAG architecture in-

stead of an aggregation tree. Addressing the duplication problem of the DAG architecture,

Considine et al.[25] and Nath et al.[59] independently propose using duplicate-insensitive

sketches for data aggregation in sensor networks. While Considine et al. focus only on

efficiently counting SUM aggregates, Nath et al. give a general framework of defining and

identifying order and duplicate insensitive (ODI) synopsis, including a uniform random

sample (DIR sample as we call it in this chapter). We compare our algorithm to DIR,

which computes a uniform random sample of the sensor data on any arbitrary hierarchical

network structure, using an optimum number of messages. The algorithm initially assigns

random weights to data values. To generate a sample of size s, each node selects the sam-

ple values having the biggest s weights. The selected sample values are propagated up

the hierarchy to the sink. Since during each sampling stage, the top s weighted samples

are selected, after the final stage, a uniform sample of size s is obtained. Similar to this

approach, our algorithm also uses a deterministic way to generate s samples for each node,

thus effectively distributing sampling work equally over every node.

Manjhi et al.[57] by combining the tree and multi-path aggregation structures,

propose a tributary-delta structure. Tree and multi-path structures coexist in this new struc-

ture, and convert to each other, so the tributary-delta can behave as effective as a tree and

as robust as a multi-path, depending on the need and network topology. Shrivastava et al.

propose an aggregation technique for medians in [64], specifically for sensor networks.

Greenwald and Khanna [36] extend their space-efficient order statistics algorithms for sen-

sor networks.

Compression is used recently as an aggregation method for sensor networks.
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Lazaridis and Mehrotra[51] propose using a piecewise constant approximation algorithm to

compress the time series with quality guarantees. Since the method proposed is lossy com-

pression for single dimension time series only, applying it would not keep the valuable cor-

relation information in multi-dimensional data. We assume our data is multi-dimensional

(such as temperature, barometer, etc.) and we are mostly interested in the correlation of

these dimensions. Deligiannakis et al. [29] propose extracting a base signal from the data

and further using piecewise linear regression to compress the original signal, using the

base signal. The algorithm explicitly uses the correlation between multiple dimensions of

data (if exists) to increase the effect of compression. Multi-dimensional lossy compression

methods (that keep correlations) and lossless compression methods are complementary to

our work, since the samples we create are subsets of the original data, and any method

to compress the data can be applied to our samples too. In this chapter, to focus on the

original behavior of the algorithms, we present the algorithms without the added benefit of

compression.

In their work, Heinzelman et al.[38] and Chen et al.[23] present energy formu-

las for wireless transmission and receive. According to [23], the energy usage during

idle::receive::transmit is respectively 1::1.2::1.7. We also use the same energy formulas

in our evaluations.

3.2 Distributed deterministic sampling

In this section, we first present the notation essential to understand our algorithm.

Later, we discuss the shortcomings of the existing deterministic sampling algorithms for

arbitrary sensor network topologies, and present the necessities for using weights in the

sampling algorithm. Finally, we present our Deterministic Weighted Sampling (DWS)

algorithm, which is designed to run on distributed environments. The simplicity and effec-

tiveness of DWS is most appropriate to run on resource-restraint hardware such as sensor

nodes.
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3.2.1 Notation

Let D denote the database of interest, d = |D| the number of records, S a deter-

ministic sample drawn from D, and s = |S| its number of records. Each record consists of

a set of items. We denote by I the set of all items that appear in D, by m the total number

of such items, and by size(t) the number of items appearing in a single record t ∈ D. We

let Tavg denote the average number of items in a record, so that dTavg denotes the total size

of the database (as counted by a complete item per record enumeration).

For a set T of records and an itemset A ⊆ I , we let n(A; T ) be the number of

records in T that contain A and |T | the total number of records in T . Then the support

of A in T is given by f(A; T ) = n(A; T )/|T |. In particular, f(A; D) = n(A; D)/|D|

and f(A; S) = n(A; S)/|S|. The distance between D and S with respect to the 1-itemset

frequencies can be computed via the L2-norm (also called ‘root-mean-square,’ or RMS),

RMS(D, S) =

√∑
A∈I

(f(A, D)− f(A, S))2 (3.1)

Our goal is to select a sample S of D of size α|D| (where 0 < α ≤ 1 is the sampling

rate) that minimizes the distance RMS(D, S). Although L2-norm is our choice of distance

metric in this work, there are other possible notions of distance, for instance the discrepancy

(L∞-norm) can be used if the maximum deviation is important.

Finally, to relate the notation to our sensor data, we assume that nodes have mul-

tiple sensors on them (such as temperature, barometer etc.). Each reading from a sensor

corresponds to an item. A total reading from a node includes all the sensor values for a par-

ticular time. The collection of all the sensor readings correspond to records, and a whole

record is transferred between nodes during aggregation.

3.2.2 Aggregation data structure

In sensor networks we assume that the data is distributed over the nodes, hence

each node x holds a subset Dx of D such that ∪xDx = D (In the extreme case, each
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node holds a single value, which may be updated over time). We also assume that an

aggregation tree structure is already available for our algorithms. We do not require any

specific property on the tree, other than its connectedness (it must cover all the nodes).

Once the aggregation tree is built, sensor nodes, starting from the leaves of the tree, create

a sample of size s = αx|Dx| from their data Dx, and forward these samples to their parents.

Nodes in the middle levels of the tree wait until they gather samples from all their children

(or for a timeout), and then do sampling on all the gathered data, including their own, to

create a sample of size s. Since the desired sample size s is known, and Dx depends on

the number of children, each node adjusts its sampling rate αx accordingly. This sampling

scheme is similar to the DIR [59], and maintains a sample of size s for every node in the

network.

3.2.3 Motivation for weighted sampling

One important challenge for us in distributed sampling is that, since we do not

enforce any structure on the aggregation tree, the tree topology changes with the underlying

sensor network topology, and each node in the tree has an arbitrary number of children. In

particular, the sampling rate on each node varies depending on the number of children.

Simply gathering all the children’s samples in a big chunk of data and deterministically

or randomly sampling over this chunk would introduce misrepresentations in the sample

of a node. Namely, the sample values of nodes closer to the sink in the tree would have

more chance to appear in the final sample. An example aggregation tree clearly showing

this situation is presented in Figure 3.1. The top node has three samples of size s, the one

coming from the left subtree, the right subtree and finally its own data. In this case, each

sample has a different weight and a regular sampling by ignoring these weights would give

each of these three samples a 1/3 chance to appear in the final sample. This means 1/3

chance for the top node’s data, 1/6 chance for each left-subtree node’s data and 1/9 chance

for each right-subtree node’s data. As we would like to give each node’s data an equal 1/6

chance to be represented in the final sample, either the bottom nodes should send more
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Figure 3.1: An example aggregation tree showing the nodes, samples and the weights for

each sample. Each node gathers samples from its own data and children’s samples and

creates a sample of size s. The sampling process is well distributed on each node, since

each node maintains a sample of size s.

samples (vastly increasing the communication), or the samples should be weighted and

the sampling algorithm has to be designed accordingly. This is the main reason existing

centralized algorithms (EASE, Biased-L2) don’t work on sensor networks. To overcome

this difficulty in our algorithm, we introduce weights for each sample, which are simply

the representations of how many other nodes this sample stands for. Deterministically

sampling the gathered data using the weights, we guarantee that each node’s data has the

same chance to belong to the final sample, independent from its provenance in the network.

3.2.4 Deterministic Weighted Sampling (DWS)

We discussed the motivation for weighted sampling in distributed environments

in the previous section. In this section, we present the main weighted sampling algorithm.

DWS (pseudo-code given in Figure 3.2) handles weighted sampling at a node x, where

the data comes locally from Dx with a weight of 1, and otherwise from the samples in

its children y, each with a weight Wy. Thus Wx = 1 +
∑

y Wy, and these weights can
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be accumulated in the network at a very low cost. Further, the weights are normalized by

αxWx as in lines 1–3, and we abuse the notation slightly to use wj ← wy for each record j

coming from source y.

Based on the RMS distance function in Equation (3.1), but allowing weighted

processing in addition, the algorithm uses the following penalty function,

for each item i:

Qi = (ri − αni)
2,

where ri and ni are the weighted counts of item i in the sample and the dataset, respectively.

The total penalty is Q =
∑

i∈I Qi. For each i ∈ j, accepting a record j increases ri by 1

and ni by wj , while rejecting a record only increases ni by wj , where wj is the weight of

the record j in dataset. During sampling, each record is added to the sample with a weight

of 1. After sampling finishes the record weights are updated to reflect the total weight of

that sample. Since the total weight of the sample is the number of other nodes it represents,

the weight is simply the total number of contributing nodes in the subtree up to the node in

question, which is easily accumulated at each sampling stage.

In order to accept a record into the sample, the penalty value should decrease,

namely,

[(ri + 1)− α(ni + wj)]
2 − [ri − α(ni + wj)]

2 < 0,

Refactoring the following per item condition, we obtain:

1 + 2(ri − αni − αwj) < 0,

Summing over all items in j, we get

size(j) + 2
∑
i∈j

(ri − αni − αwj) < 0,

After further manipulation, the condition becomes

size(j) + 2
∑
i∈j

(ri − αni)− 2αwj · size(j) < 0.
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DWS(D, W, x, αx)

1: wx ← 1/(αx ·Wx)

2: for each child y do

3: wy ← Wy/(αx ·Wx)

4: end for

5: for each item i do

6: ni ← ri ← 0

7: end for

8: for each record j in Dx ∪ (∪yDy) do

9: sumn ← 0, sumr ← 0

10: for each item i in j do

11: sumn ← sumn + ni; sumr ← sumr + ri

12: ni ← ni + wj

13: end for

14: R← sumr − αx · sumn

15: K ← 2 · αx · wj − (2 ·R)/size(j)

16: if K > 1 then

17: Insert j into the sample Sx

18: for each item i in j do

19: ri ← ri + 1

20: end for

21: end if

22: end for

23: return (Sx, Wx)

Figure 3.2: The Deterministic Weighted Sampling algorithm
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The acceptance rule then becomes:

2αwj −
2
∑

i∈j (ri − αni)

size(j)
> 1

which is the acceptance rule used in Figure 3.2 (lines 12–13).

Our method works by extracting from the sensor data a set of multi-dimensional

boolean attributes. Categorical attributes are easily reduced to this setting by introducing

a boolean characteristic attribute for each discrete category; numerical attributes can be

reduced to it as well by associating a boolean attribute to a range in some shared histogram.

Each boolean attribute is considered as a subset of the sensors (those for which there is a

match). It strives to select a sample that simultaneously minimizes the frequency error over

all the attributes.

As the communication costs are the dominating factor in sensor networks, we

present the performance of the algorithm in number of messages. Assuming each sample

value fits in a single message, the sample size of each node is s, and the total number

of nodes is k, our algorithm performs a full sampling with O(ks) messages. The memory

requirement of the algorithm is O(m+sTavg) per node, based on storing the counts for each

item (m such items), weights for each record and the raw sample. Practically speaking, if

we assume we are using a dataset with 5 tuples per record (similar to our real world dataset

described further in Section 3.3.1), we need to use 6 integers (24 bytes) to store a record

with its weight. Typically, keeping a sample of 1, 000 records requires 24 Kbytes. The

space required for the item counts is flexible and independent from the sample size. We

can use a higher granularity for item counts to increase the accuracy of our sample, or if

application permits, we can decrease the granularity to save memory for additional sample

values. For example, if we use 100 equi-sized buckets per tuple to represent item counts,

we need 2 Kbytes to store integer counts for the items. Since a typical sensor node (ex.

Berkeley Motes) currently has 128 Kbytes of memory, we assume these are reasonable

memory requirements.
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3.3 Experiments

In this section, we now evaluate our DWS algorithm both on real and synthetic

data, and compare with the DIR sampling algorithm[59] based on sample accuracy and en-

ergy usage. We demonstrate our work using the wireless sensor network simulator Shawn

[49]. Shawn is a discrete event simulator that allows us to test our algorithms on more

nodes than the other well known simulators.

We introduce the real world climate dataset in Section 3.3.1. In Section 3.3.2

we give the simulation results of our deterministic algorithm (DWS), and compare the re-

sults to other algorithms such as naive random sampling and Duplicate Insensitive Random

(DIR) sampling. We show that our algorithm has many advantages such as better sample

quality and less communication rate compared to other methods. Finally, Section 3.3.3

demonstrates the performance of our algorithm in answering typical SQL queries such as

AVG, COUNT, SUM, MAX, etc. over climate data set.

All energy usage calculations in the experiments are based on total number of sent

and received messages. Using the weights from[23], the received messages are weighted

with 1.2, the sent messages are weighted with 1.7 and energy usage for a node is the total.

Each tree building message is calculated as a single message. When exchanging samples

between nodes, each record is assumed to fit in exactly one message, also the weights of

the whole sample are assumed to fit in one message. These are reasonable assumptions,

since there is only limited number of sensors on each node, so the nodes can transfer all

readings in one single message.

3.3.1 Climate dataset

In our experiments, we used real world climate data from U.S. National Cli-

matic Data Center1. The dataset is the daily readings of precipitation, snow fall, snow

amount, maximum and minimum temperature values throughout the continental U.S., cov-

1http://www.ncdc.noaa.gov/oa/climate/research/ushcn/daily.html
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ering 1064 stations for nearly the last 100 years. Since there are gaps in the station readings,

we selected the maximum possible stations covering the exact same days. We gathered 227

stations having 4153 daily readings per station. The time period of the readings is presented

in Figure 3.4. The black marked regions show the available days while the white regions

show the gaps between daily readings. The real locations of the 227 stations on the U.S.

map2 is also presented in Figure 3.5.

For our real data experiments, we simulated the sensors on the U.S. map (scaled)

by associating each sensor with a station, and positioning 227 sensor nodes on a 60x25

region, according to real station positions (latitude and longitude) on the map. The sensor

node corresponding to the station in Central Park, NY is selected as the sink. To preserve

the time and location correlation of data, we further fed each sensor with the exact data

collected from the associated station, in original order. This way, each reading of a sensor

corresponds to a daily data of the associated station. The average values of the 5 tuple data

are plotted in Figure 3.3.

Analyzing the climate data, we also realized that there exist many inconsistencies

within the data, because of measurement equipment failures in early days, and metric con-

version errors. We left these inconsistencies as is, since they present additional challenge

for us in the dataset, and these kind of perturbations in data are quite likely in real world

sensor deployments.

3.3.2 Distributed data reduction

In this section, we give the simulation results of our Distributed Weighted Sam-

pling algorithm on sensor networks. The evaluation is based on two categories, the sample

quality and the energy usage. In order to demonstrate our work, we also include the naive

random sampling algorithm and a more advanced, Duplicate Insensitive Random (DIR)

sampling algorithm from Nath et al.[59].

Two different datasets are used in the simulations, the climate dataset we intro-
2Generated using tools from http://www.planiglobe.com
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Figure 3.3: Average values of precipitation (top left), snow fall (top right), snow amount

(center left), maximum temperature (center right), and minimum temperature (bottom).
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Figure 3.4: Time period for weather data used in the simulations.

Figure 3.5: Simulated U.S. area (60x25), and 227 sensor locations.

duced in Section 3.3.1, as the real world dataset and the synthetic dataset (T10I6D1500K),

which is an association rule dataset, created using the IBM data generator [65]. The syn-

thetic dataset includes 1, 500, 000 records, each having different number of items. The aver-

age number of items in each record is 10, the average number of itemsets is 6, and the total

number of unique items is 1, 000. Items represent different sensor readings, and a record

represents a total reading from a sensor, with various items. Items represent discretized

readings from sensors; for instance, if we assume we have 10 sensors on a single node, and
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each sensor reading is discretized into 100 buckets (such as temperature), a record having

items 30, 140, 550 means the readings for the first sensor is 30, second one is 40, fifth one

is 50 and there are no readings present for the rest of the seven sensors.

For the simulations with the climate data, we used 227 nodes, each having a

constant radio range of 6 to ensure connectivity. The sink is placed on a predefined location

as discussed in Section 3.3.1. For synthetic dataset simulations, we again used 227 nodes,

randomly deployed in a 60x25 area, sink on the center.

Initially, for each algorithm, a data aggregation tree is created using the same

algorithm as in [54]. In naive random sampling, each node samples s records and forwards

the samples up the tree without any further data reduction. At the end the sink has sk

records from a network of k nodes, which it further samples to generate a sample of size s.

The details of DIR algorithm are already discussed in Section 3.1, and our DWS algorithm

in Section 3.2.

The simulation results show the averages of running DWS algorithm on synthetic

dataset and random algorithms (naive and DIR) on both datasets 100 times. Since climate

dataset is a static dataset, and DWS is a deterministic algorithm, DWS is ran once on this

dataset.

Figure 3.6 (a) and Figure 3.7 (a) show the RMS error values of the final sample

generated by the algorithms for four different sample sizes 1000, 2000, 3000 and 4000 on

both datasets. From these figures we can see that our DWS algorithm generates up to a

factor of 4 times better quality samples than the other two algorithms, for both datasets.

Figure 3.6 (b) and Figure 3.7 (b) show the total energy used in the network while

generating the samples. The energy usage is calculated based on the total number of mes-

sages sent and received as described in Section 3.3. The energy usage results are scaled for

a clear presentation. As expected, the energy usage of DIR and DWS are the same, and up

to a factor of 20 times less than that of the naive random sampling.

To clearly compare DIR and DWS algorithms, in Figure 3.6 (c) and Figure 3.7 (c),

we generate two samples having the same quality based on RMS error values and compare
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(a)

(b)

(c)

Figure 3.6: Results for real world climate dataset. (a) RMS results vs. sample size, (b)

energy usage vs. sample size, and (c) energy usage vs. sample quality.
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(a)

(b)

(c)

Figure 3.7: Results for synthetic dataset. (a) RMS results vs. sample size, (b) energy usage

vs. sample size, and (c) energy usage vs. sample quality.
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the energy used by both algorithms. Here, DIR algorithm still uses samples of sizes 1000,

2000, 3000 and 4000. The sample sizes of DWS algorithm are 268, 448, 532, and 600 for

climate dataset, and 314, 505, 685, and 766 for synthetic dataset. For both datasets, DIR

algorithm uses up to a factor of 6 times more energy than DWS algorithm. From the figures

it is clear that, we can have the same quality sample by using considerably less energy if

we use our DWS algorithm.

3.3.3 Example SQL queries

In this section, we evaluate answering SQL queries using the sample instead of

the dataset after the sample is extracted and stored in a DBMS outside of the network. We

presented sample quality results of our algorithm in the previous section. Those results

were based on RMS distance between the dataset and the sample. Now we compare the

two algorithms using AVG, MAX, SUM and COUNT queries. To achieve this goal, we use

the real-world climate dataset as our dataset of choice. As we keep the original order of the

records in this dataset, we created a single sample of size 4000 (sampling rate of 0.0036)

using our deterministic algorithm, and 10 samples of size 4000 using the DIR sampling

algorithm (as this is a randomized algorithm). Our deterministic algorithm on this static

data always creates the same sample, so it is not necessary to generate multiple samples.

On the other hand, the DIR algorithm is run multiple times to observe the average behavior

of the algorithm, since the samples generated are different for each run of the algorithm.

When presenting the results for the DIR algorithm, we present the min, max, mean and

standard deviation of the errors over the 10 samples.

Samples are created once and all 4 queries are answered using these samples. The

evaluation metric is the error rate between the query results of the dataset and the sample,

calculated as:

ErrorRate =

∣∣∣∣Resultdataset − Resultsample

Resultdataset

∣∣∣∣
In Figure 3.8, the horizontal lines are the DWS error rates, which is a single value per



49

sample. The vertical lines are the min-max values for DIR error rate, and the boxes show

the mean and the standard deviation values of the DIR error. Table 3.1 presents in detail

the comparison of the DWS and DIR algorithms. DWS errors are compared with the mean,

min and max errors of the DIR samples, and the results are presented as a ratio of DIRerror

DWSerror

for easy comparison.

Query 1

SELECT AVG(prcp), AVG(snow),

AVG(snwd), AVG(tmax), AVG(tmin)

FROM dataset

This is a query to test the effects of sampling algorithms on AVG queries. The query selects

the average values for all 5 tuples on both dataset and each sample, and Figure 3.8 (top left)

and Table 3.1 show the error rates of both algorithms. Looking at the average error rates,

except snow fall (snow), DWS algorithm outperforms DIR, sometimes by a factor of 24

times. Additionally, DWS error rate is much smaller than the worst case DIR samples

(sometimes by a factor of 59 times), and close to the minimum error range of random

samples. We would like to state here that it is unlikely for a single random sample to

accurately answer all queries, the minimum error values for DIR are coming from different

random samples, however we use only one DWS sample and being close to the minimum

bounds of DIR samples shows how accurate our deterministic sample is.

Query 2

SELECT COUNT(*)

FROM dataset

WHERE snow=0 AND snwd > 0

The second query finds the number of days when the snow fall amount is zero but there exist

snow on the ground. Our focus is to test COUNT type queries. We are also testing if the

correlation information between snow fall (snow) and snow amount on ground (snwd) are
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preserved accurately in the samples. Figure 3.8 (top right) and Table 3.1 show the results

for this query. As we claimed, the deterministic algorithm is more accurate to represent

the correlation information in multi-dimensional count data. The deterministic sample is a

factor of 8 times better than the average, 1.3 times better than the best and 18 times better

than the worst random sample. Deterministic sample is the clear choice in this query as it

outperforms random samples in all aspects.

Query 3

SELECT MAX(prcp)

FROM dataset

WHERE tmax > 80

This is an outlier query testing the MAX value and also the correlation information between

precipitation (prcp) and maximum temperature (tmax). The result is presented in Figure

3.8 (bottom left) and Table 3.1. Both algorithms are quite inaccurate finding the MAX

value. Note that this result is typical, samples in general are not good for handling out-

liers. Detecting and handling outliers is another research topic[12, 33], and requires more

specific data structures and techniques. We also would like to highlight that each of these

specific techniques solve a specific kind of outlier problem, and there is no ”one size fits all

solution”. Therefore all these techniques can be used additional to the sampling approach

to generate a more complete data reduction solution. For this reasons, we only would like

to demonstrate the shortcomings of sampling in general, and focus on finding samples for

more general use.

Query 4

SELECT SUM(snow)

FROM dataset

WHERE tmin < 0

The last one is to test SUM type of queries. Selects the total snow fall amount for days
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DIR/DWS Query-1

PRCP SNOW SNWD TMAX TMIN Query-2 Query-3 Query-4

MEAN 2.50 0.86 1.31 5.33 24.41 8.39 1.00 5.47

MIN 0.33 0.26 0.12 0.21 3.56 1.35 0.90 0.77

MAX 7.20 1.60 4.13 9.74 59.26 18.17 1.06 10.85

Table 3.1: Ratio of the mean, min and max error values of the DIR samples to the error

values of DWS sample for each query.

having minimum temperature less than 0 degrees. The results are in Figure 3.8 (bottom

right) and Table 3.1. We can clearly see that, for this query, the deterministic sample is

slightly worse than the best random sample, and a factor of 5 times better than the average

and also a factor of 10 times better than the worst random sample. In this query also,

deterministic sample is much more accurate in keeping the correlation information between

snow fall and minimum temperature.

We tested our algorithms on real world dataset, using typical SQL queries. As

expected the sampling algorithms give accurate results for SUM, COUNT, AVG type of

queries, and quite inaccurate results when it comes to outlier queries such as MAX (see

Figure 3.8 and Table 3.1). We also observe that deterministic algorithm is much more

accurate in keeping correlations between items. The accuracy of the aggregation algorithm

relates to the total energy usage of the network (communication to extract the sample), such

as a smaller deterministic sample is more preferable to a bigger random sample, when both

have the same accuracy. The results in Figure 3.8 and Table 3.1 also demonstrate that once

a sample is extracted from the sensor network, it can be used to answer different types of

queries (except outliers of course), with reasonable accuracy.
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Figure 3.8: SQL query errors for deterministic sample and DIR samples. Results for Query-

1 (top left), Query-2 (top right), Query-3 (bottom left) and Query-4 (bottom right).
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3.4 Concluding remarks

We have presented DWS, a novel deterministic weighted sampling algorithm as

a new aggregation method for network of wireless sensors. Deterministic Weighted Sam-

pling is simple enough to not consume too many resources locally, and we validate through

experiments that the sample it provides is vastly superior to other distributed sampling

methods exist for sensor networks. Our algorithm is designed to work on arbitrary network

topologies, by introducing weights for samples and dynamically updating these weights

throughout the sampling. DWS by design effectively distributes the aggregation work over

all the nodes by enabling each node to generate a fixed sized sample and prevents any node

from being a bottleneck.

One criticism of our approach is that loss of connection in the aggregation tree

structure induced by link or node failure can have drastic effects on the representativity

of our sample, since an entire subtree may no longer be contributing to the sample. This

can be handled by allowing a multi-path aggregation structure [59, 57]. In the context

of aggregation, however, one must then address the problem posed by the duplication of

the data along these multi-paths. The duplicate-insensitive solutions provided by Nath et

al. [59] and Considine et al. [25] do not extend to our deterministic algorithm, and we

leave it as a matter for future research to handle robust connectivity with our deterministic

sampling algorithm.

Although our original design requires input from every sensor node, this can

easily be remedied by incorporating other sparse sampling approaches. We note that our

approach only concerns how the samples are aggregated along the network. For instance,

the contributing nodes can be selected by another sampling approach such as the approx-

imate uniform random sampling of Bash et al.[13]. Likewise, the temporal frequency at

which measurements are updated at a node can be regulated by an adaptive process such as

proposed by Jain and Chang[44]. In any case, known compression methods can be applied

to the in-network sample aggregation to further minimize communication costs[28, 29, 51].
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Chapter 4

GPS & Compass Free Node Localization On Wireless

Sensor Networks

Wireless sensor networks are composed of hundreds, possibly thousands, of low-

cost sensor nodes that are capable of making environmental measurements, performing

computations, and communicating with one another. Most importantly, through small mo-

tors or motion actuators, these devices are capable of physically organizing themselves in

order to cooperatively achieve a desired task [71].

An important problem in mobile sensor networks is each sensor’s awareness of

its position and direction of movement relative to the entire network. This problem is com-

monly known as localization [41]. In general, such location awareness empowers routing

algorithms to determine the most efficient message paths [47], or to achieve goals such as

optimal area coverage [61]. For example, in aggregation networks [26], node localization

is needed in order to construct topology-aware routing overlays that will reduce message

transmission time, increase reliability, and reduce power consumption. In routing appli-

cations, it is sufficient for nodes to be aware of the coordinates of their neighbors relative

to a local coordinate system common to the entire network [20]. We call this relative lo-

calization since each node’s position is relative to the local coordinate system. To support

mobility applications, a node must move in a specific direction in a manner that is related

to its neighbors. To achieve this, in addition to knowing its neighbors’ positions relative
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to a common coordinate axis, a node must be aware of its neighbors’ positions relative to

its own direction of movement. This is the node’s orientation. We call directional local-

ization the problem of determining the position and the orientation of each sensor in the

common coordinate system. In the remainder of the chapter we may refer to “directional

localization” as simply “localization,” unless otherwise noted.

Providing support for directional localization in mobile sensor networks is a diffi-

cult task. Traditional solutions rely on information supplied externally in one of two forms:

(1) via global positioning systems (GPS) – which requires additional hardware at additional

costs, or (2) via fixed-point reference nodes, or anchors, whose global locations are known

a-priori [24]. Such methods are most commonly used in static networks [62]. Recent ef-

forts on mobile networks assume that only a small subset of the moving nodes (seeds) use

GPS [43].

Many applications require sensor network mobility in environments where GPS

signals may not be available and pre-existing infrastructures do not exist. Consider a fire

search mission inside a building where a set of mobile nodes explore a floor with the goal

to locate the source of fire. The nodes move collaboratively, in a semi-rigid swarm, taking

temperature measurements while following a path that covers the area. Additional factors

may exacerbate the problem further. Environmental errors must be taken into considera-

tion, otherwise due to node mobility the additive error in the estimated location can accrue,

rendering any algorithm impractical. This is a consequence of mechanical errors in eval-

uating the direction and distance of movement, which may occur in-between individual

measurements. This type of errors can be due to manufacturing defects or fluctuations in

the environment (e.g. surface friction). Thus, as the movement of the network evolves, the

uncertainty of the position and direction of a node increases.

Our main contributions are algorithms for solving the problem of directional lo-

calization in sensor networks with mobile GPS-free nodes. We introduce novel, motion-

based algorithms for node position and direction calculation with respect to each individual

node’s local coordinate system in mobile ad-hoc sensor networks, without global position-
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ing information. Our first algorithm, GPS-free Directed Localization (GDL), assumes the

availability of a digital compass on each node, and calculates a node’s directional local-

ization from a single-step movement. In our second algorithm, GPS and Compass free

Directed Localization (GCDL), we relax the compass requirement and compute directional

localization with a 2-step motion algorithm. Our algorithms perform localization in a few

steps of movement and have a small memory footprint; in addition, they are not affected

by cumulative position errors. More specifically, our proposed algorithms:

• provide directional neighbor localization in a network-wide coordinate system,

• work under fairly large motion and distance measurement errors,

• are unaffected by the speed of nodes,

• support a stable network in mobility problems.

To experimentally validate our algorithms, we built a simulation framework. We

analyzed the impact of the direction and distance errors on the location estimation errors,

and our experiments in diverse operational scenarios demonstrated that the average local-

ization errors of our algorithms are near constant throughout the movement. We show how

our algorithms can be utilized to create a stable and structured swarm of sensors without

an underlying infrastructure or global positioning devices.

The remainder of this chapter is structured as follows. Section 4.1 discusses

related work. Our localization algorithms are described in Section 4.2, while Section 4.3

outlines their use in coherent mobility scenarios. The main results of our experimentation

are presented in Section 4.4, and Section 4.5 provides the concluding remarks.

4.1 Related work

Early research on sensor localization problems have primarily focused on static

sensor networks [62]. Recently, however, more attention has been given to mobile environ-

ments. Problems in mobile sensor networks have been investigated mainly in conjunction

with a particular positioning infrastructure (anchors, seed nodes, beacons) or under random
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movement scenarios [20].

Low precision for close range and limited coverage (especially indoors) of GPS

systems led to the investigation of GPS-free localization for mobile nodes. One common

technique used is to exploit wireless communication. Bulusu et al. [17] use known refer-

ence points to send periodic beacon messages. By receiving beacons from these reference

points, nodes can localize themselves. The accuracy of the localization depends on the

distance to the reference points. Priyantha et al. [62] also use beacons for localization, but

they assume the real locations of the reference points are unknown. The problem of cal-

culating global geometry from local information is proved to be NP-hard [69]. For static

nodes, and only using Euclidean distances, Bădoiu et al. [11] propose a constant factor,

quasipolynomial-time approximation algorithm. The algorithm requires complete graph

information, which results in substantial communication overheads [11] in mobile wireless

networks.

In [20], relative localization in mobile sensor networks is accomplished through

triangulation of neighbor nodes using a common one-hop neighbor. The authors propose

algorithms for building a relative coordinate system based on a central node, or a dense

group of nodes called Location Reference Group. Although this work is similar to ours in

that it estimates positioning in a mobile environment without seed nodes, its primary focus

is on negotiating a relative coordinate system for the entire network. While this solution

finds applications in routing protocols, it is not applicable in mobility scenarios where

directed motion is required, because the relative coordinate system used does not map to

the real node positions.

In [43], a sequential Monte Carlo method is used to probabilistically estimate the

locations of nodes in a network with a few seeds. Seeds are those nodes which know their

precise location, through the use of GPS, for example. Due to the model’s dependence

on the prior estimates, the location errors are cumulative and a re-sampling step must be

introduced. The re-sampling process requires each node to collect as much as fifty samples

before a good estimate can be made. A method based on predictions is presented in [50],
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where nodes in the network use a dead reckoning model to estimate the movements of all

other nodes. Position information is adjusted for granularity so that distant pairs of nodes

maintain less accurate position information than pairs which are closer to each other.

Concerning distance and motion detection error, Rayleigh fading may introduce

significant errors due to the motion of the sensor in cases where signal strength is used

for neighbor distance estimation. This problem is studied in [14], where the location es-

timation is based on power measurement of signals received from two anchored beacons

with known locations. The authors explore how the speed of mobile nodes detrimentally

affects their localization accuracy. The mechanisms introduced in [14] can complement our

work to improve the neighbor distance measurement error for high speed sensors. Distance

measurement methods are surveyed in [18]. The Time of Arrival (TOA) method finds the

distance between a transmitter and a receiver through the use of one way propagation time.

Time Difference of Arrival (TDOA) is another method to estimate the distance [34]. The

TDOA method uses RF and ultrasound signals to estimate the distance accurately, at the

expense of additional ultrasound transmitters and receivers.

4.2 Localization algorithms

In this section, we present our GPS-free localization algorithms. Our first algo-

rithm, GDL, works under the following assumptions:

• Each node has a compass pointing North (or any other common reference direction).

• Nodes can measure the distance to their neighbors using a known range measure-

ment method, such as Time of Arrival (TOA)[18], or Time Difference of Arrival

(TDOA)[34].

• Motion actuators allow each node to move a specific distance in a specific direction

(with respect to North).
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• Actuator, compass and distance measurements are subject to errors caused by various

real world disturbances such as wind, rough terrain, equipment failures etc.

• Other than the above, no additional positioning equipment or infrastructure is re-

quired.

We give details of our first algorithm in Section 4.2.1. In Section 4.2.2 we present

our second algorithm, GCDL, which has the exact same assumptions listed above but does

not require a compass.

4.2.1 GPS-Free Directed Localization (GDL)

The GDL algorithm makes use of a digital compass and achieves localization in

a 3-stage process termed epoch. GDL consists of two sub-algorithms; Core localization

and Verification. The core localization algorithm generates two possible relative positions

for each neighbor that participates in the localization, and the verification algorithm uses a

third neighbor to yield the correct final solution from these relative positions. Below, we

give the details of these algorithms.

Core localization algorithm: The core localization algorithm works with variable length

epochs, where each epoch involves three distinct stages:

1. Distance measurement between neighbors,

2. Individual movement of the nodes,

3. Exchange of direction and distance values for that epoch between neighbors.

Epochs are initiated by nodes whenever they need localization. Possible causes of localiza-

tion are sudden increase or decrease in the number of neighbors, which hints clustering or

partitioning in the network, and may require re-positioning of the nodes. We do not require

any other continuity or pattern between epochs. We also do not assume anything about the

temporal duration of the epochs. However, we assume that the nodes do not change their

direction of movement within an epoch.
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Figure 4.1: (a) Typical movement of two nodes, with angles and distances. (b) An example

non-rigid geometry, where nodes move an equal distance in parallel. In the equal parallel

movement exceptional configuration, localization is not possible because, geometrically,

nodes can have infinite positions around each other.

A typical movement of two nodes n1 and n2 in an epoch is shown in Figure 4.1(a).

At time t1, n1 is at position (x0, y0) and n2 at (x2, y2), and the nodes measure the initial

inter-distance d1. Between time t1 and t2, each node {ni | i = 1, 2} moves in a direction

αi and covers a distance vi. At time t2, the nodes, now at positions (x1, y1) and (x3, y3),

calculate their inter-distance d2 and exchange vi and αi information. After receiving all the

information, each node selects itself as the origin and calculates the position and direction

of the other node, in its local coordinate system. To solve the equations in the local system

of n1, we choose the position (x0, y0) of n1 as the origin and write:

x1 = v1 cos α1, y1 = v1 sin α1, (4.1)

x3 = x2 + v2 cos α2, y3 = y2 + v2 sin α2, (4.2)

(x3 − x1)
2 + (y3 − y1)

2 = d2
2, x2

2 + y2
2 = d2

1. (4.3)
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Substituting equations (4.1) and (4.2) into equation (4.3), we get:

x2A + y2B = C, (4.4)

with the appropriate definitions:

A = v2 cos α2 − v1 cos α1, B = v2 sin α2 − v1 sin α1,

C =
1

2

(
d2

2 − d2
1 − v2

1 − v2
2 + 2v1v2 cos(α1 − α2)

)
.

Substituting x2 = (C − y2B)/A and y2 = (C − x2A)/B into x2
2 + y2

2 = d2
1, we get:

x2
2D − 2x2E + F = 0, y2

2D − 2y2G + H = 0, (4.5)

again with the appropriate definitions:

D = A2 + B2, E = AC, F = C2 − d2
1B

2,

G = BC, H = C2 − d2
1A

2.

Note that the coefficient of x2
2 and y2

2 is the same in both equations (4.5), namely, D.

Using (4.5), each variable solves independently to

x2 =
E ±

√
E2 −DF

D
, y2 =

G±
√

G2 −DH

D
(4.6)

and solutions can be paired up by using equation (4.4), as long as D 6= 0. In practice, one

would compute either x2 or y2 using (4.5) and deduce the other variable using (4.4). When

A = 0 but B 6= 0, one would compute x2 using (4.6), and when A 6= 0 but B = 0, one

would compute y2 using (4.6) instead. If both A = B = 0, then D = 0 and subsequently

an exceptional configuration is formed; we discuss this case below.

The core localization algorithm to calculate the position of n2 from n1 is pre-

sented in Figure 4.2. Solving the equations, each node finds two possible positions for

each of its neighbors. Since only one of these solutions is realistic (the other one is due to

“symmetry”), each node has to complete a verification step, this time using an additional

common neighbor (n3).
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CORELOCALIZATION(n1, n2, v1, α1)

1: d1← inter-distance(n1, n2)

2: Move node n1 by v1 and α1

3: d2← inter-distance(n1, n2)

4: Retrieve v2 and α2 from n2

5: Calculate positions of n2 using equations (4.4),(4.5) and (4.6)

VERIFICATION(NEIGHBORLIST NL)

1: for each neighbor pair (m, n) in NL do

2: if m and n are neighbors then

3: dm,n ← measured inter-distance(m, n)

4: for each position pair {mi, nj | i, j = 1, 2} do

5: Compute Euclidean distance D between mi and nj

6: if D = dm,n then

7: mark mi and nj as exact positions

8: end if

9: end for

10: end if

11: end for

Figure 4.2: Core localization algorithm for n1: calculates two possible positions for n2.

Verification algorithm evaluates the position estimations of neighbor nodes such that only

1 out of 4 position pairs validates the distance.
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Verification algorithm: In Figure 4.2, we provide an algorithm that verifies a node’s

position using a third neighbor. This step is required to solve the ambiguity of two possible

positions per neighbor calculated in core localization algorithm. After solving equations

(4.4) and (4.6) in the previous section, node n1 has two position estimates {n1,2
j | j = 2, 3}

for each of its neighbors n2 and n3. In order to find the positions and direction, n1 retrieves

the distance between n2 and n3 (d2,3) from either one of these nodes, and simply finds the

correct pair of positions {n1,2
j | j = 2, 3} that has a matching distance.

For rigid geometries and configurations without errors, there can only be one pair

verified. However, for configurations with errors, we relax the algorithm to select the pair

with the closest distance value to d2,3.

Exceptional configurations: The above localization algorithm works for rigid geome-

tries where two possible positions per neighbor are estimated. Due to various real world

disturbances and equipment errors, nodes do not always get a rigid geometry from their

measurements. In this case equations (4.4) and (4.6) have no use. Any time the core

algorithm cannot find meaningful results we reach what we term exceptional movement

configurations. We distinguish two such configurations named equal parallel movement

and excessive error configurations that we discuss below.

• Equal parallel movement configurations occur when D is equal to zero in equation

(4.6). This also implies that A = 0 and B = 0 since D = A2 + B2. An example

of equal parallel movement configuration is shown in Figure 4.1(b). In this case, the

nodes move in parallel and keep the exact same distances (d and v) between them,

so that node n2 can be anywhere on a circle at a distance d away from node n1, and

vice versa. The geometry is not rigid and infinitely many possible solutions exist for

both neighbors.

• The second exceptional configuration is that of excessive error. The main sources

of error in our algorithm occur due to distance, actuator and compass measurement
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inaccuracies. When highly erroneous d, v and α values create a non-rigid geometry,

such that E2−DF < 0 or G2−DH < 0 in equation (4.6), our core algorithm cannot

localize n1 and n2.

Although we cannot entirely avoid the above exceptional configurations, the core

localization part of GDL algorithm can readily detect them. Once detection takes place,

nodes can skip that epoch and can make necessary adjustments (e.g. random changes) to

their speed and direction to avoid the same ill-configuration in the next epoch.

4.2.2 GPS and Compass-Free Directed Localization (GCDL)

Additional cost on hardware and possible physical conditions altering magnetic

field restrict the use of compass in certain hostile environments such as disaster areas. To

enhance versatility, we relax the requirement for a compass and achieve localization using

an algorithm that controls the mobility of the nodes. The main idea is to divide the nodes

into two groups, blue (dark) and red (light), and move only one of these groups while the

other group is stationary. We show that, through the use of geometric properties, we can lo-

calize the neighbors in a 2-step motion for each group. After localization, nodes can agree

on a common north, which essentially has the same effect as having a compass. Com-

mon north resolution also enables the nodes to perform coherent movement as a network,

which is one of our main goals. Furthermore, by relaxing the requirement for a compass,

we relieve our GCDL algorithm from compass related failures such as measurement or

equipment errors, and improve the robustness of our approach.

We outline our 2-step motion algorithm (Figure 4.3) using a blue (dark) and a

red (light) node. The blue node is stationary, and the red node performs a 2-step motion to

localize the exact position of the blue node. Each time the red node communicates with the

blue node, a virtual communication circle is formed. In order to exactly find the position of

the blue node, three circles are needed. Therefore, by keeping track of its own movement

distance, in the worst case, the red node gathers enough data to localize the blue node only
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Figure 4.3: 2-step motion for localizing the blue node.
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Figure 4.4: Geometry of the GCDL localization showing the blue (dark) node stationary

at position x3, y3, and red (light) node performing 2-step motion from x1, y1 to positions

x0, y0 and x2, y2 in order to localize the blue node.
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after 2-step motion. Note that if the movement of the red node is directly towards (or away

from) the blue node, one step of the motion is enough for localization, since in this case

the geometry forms two mutually tangent circles within each other, which intersect at the

exact location of the blue node.

In order to outline the geometric calculations necessary for localization after 2-

step motion we assume the blue node in Figure 4.4 is stationary at position (x3, y3), and the

red node moves to positions (x1, y1), (x0, y0), and (x2, y2) respectively. We also assume

that each node has a local coordinate system, based on an arbitrary north, and nodes can

mechanically track their movements relative to this local coordinate system. For example

nodes can mechanically turn 90◦ based on their local north without requiring a compass.

The movement of the red node is represented by a < distance, angle > pair. Here, the

angle is relative to the local coordinate system of the blue node. The first movement from

position (x1, y1) to (x0, y0) is represented as < v1, θ1 >, and the second movement from

position (x0, y0) to (x2, y2) is represented by < v2, θ2 > pair. For each position of the red

node, we write the following formulas:

(x3 − x1)
2 + (y3 − y1)

2 = d2
1, (4.7)

(x3 − x2)
2 + (y3 − y2)

2 = d2
2, (4.8)

x2
3 + y2

3 = d2
0. (4.9)

We write the first (x1, y1) and last positions (x2, y2) of the red node as:

x1 = v1 cos (θ1 − π), (4.10)

y1 = v1 sin (θ1 − π), (4.11)

x2 = v2 cos θ2, (4.12)

y2 = v2 sin θ2. (4.13)

Rewriting Eq.(4.7) and substituting Eqs.(4.9,4.10, 4.11) we get:

(x3 − x1)
2 + (y3 − y1)

2 = d2
1,
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x2
3 − 2x1x3 + x2

1 + y2
3 − 2y2y3 + y2

1 = d2
1,

Observing that x2
1 + y2

1 = v2
1 ,

d2
0 − y2

3 − 2v1x3 cos (θ1 − π) + v2
1 + y2

3 − 2v1y3 sin (θ1 − π) = d2
1,

We calculate x3 as:

x3 =
d2

0 + v2
1 − 2v1y3 sin (θ1 − π)− d2

1

2v1 cos (θ1 − π)
, (4.14)

Using x3 in Eq.(4.8), and substituting Eqs.(4.12,4.13) we get:

(x3 − x2)
2 + (y3 − y2)

2 = d2
2,

x2
3 − 2x2x3 + x2

2 + y2
3 − 2y2y3 + y2

2 = d2
2,

Again observing that x2
2 + y2

2 = v2
2 ,

d2
0 −

d2
0 + v2

1 − d2
1 − 2v1y3 sin (θ1 − π)

v1 cos (θ1 − π)
v2 cos θ2 + v2

2 − 2v2y3 sin θ2 = d2
2, (4.15)

We can now calculate y3 from Eq.(4.15). To ease the presentation in Eq.(4.15), we define

B as:

B =
v2 cos θ2

cos (θ1 − π)
2 sin (θ1 − π)− 2v2 sin θ2,

if we simplify, B becomes:

B =
2v2 sin (θ1 − (π + θ2))

cos (θ1 − π)
, (4.16)

Again, to ease the presentation in Eq.(4.15), we define A as:

A = d2
2 − d2

0 − v2
2 +

v2 cos θ2

v1 cos (θ1 − π)
(d2

0 + v2
1 − d2

1), (4.17)

where using Eqs.(4.16, and 4.17) y3 becomes:

y3 =
A

B
(4.18)

Solving equations (4.14) and (4.18), determines how the red node localizes the

blue node. Next, the red and the blue nodes switch roles, and the blue node moves while

the red node stays stationary. After both groups of nodes complete their 2-step motion,

they agree on a common north for the entire network, which we describe in Section 4.2.2.
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Movement direction

Figure 4.5: Zig-zag motion of nodes towards movement direction.

N

a

α

b

N

Figure 4.6: Detecting and correcting the skew between local coordinate systems of neigh-

bors. When the relative positions of the nodes to each other are a and b, the skew in their

local coordinate systems is α.
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Lock-step movement

For applications where the mobile sensor nodes are required to move as a co-

hort from one region to another, we configure our GCDL algorithm for pseudo-directional

movement. We randomly assign red and blue colors to nodes at each iteration to uniformly

color the nodes in the swarm. Once the direction of movement is known by all nodes, each

group does a zig-zag movement following the direction, as shown in Figure 4.5. A zig-zag

movement fits with our algorithms requirement of the 2-step motion, while still allowing

the node to move towards a certain direction. We would like to highlight here that the zig-

zag movement can be performed with different step movement angles. In this chapter, we

use orthogonal movements as those shown in Figure 4.5 to simplify the presentation.

Selecting a common north

In GCDL, nodes coordinate their movement based on a pseudo-north, since no

compass is used. As the pseudo-north is selected arbitrarily by each node, and altered by

the environmental conditions throughout the movement, nodes have to agree on a common

north with their neighbors to move as a cohort. Once both group of nodes complete their

lock-step motion, neighbor nodes can further communicate to agree on a common north

for all. In order to achieve this goal, each node exchanges calculated position information

of each of its one-hop neighbors, based on its local coordinate system. Each node, by cross

examining its neighbor’s position relative to itself (6 a in Figure 4.6) and its own position

relative to that specific neighbor (6 b), calculates the skew in local coordinate systems (6 α

in Figure 4.6). Once the skew between local coordinate systems is detected, the nodes can

use two methods in order to agree on a common coordinate system: (1) use a proactive

approach and force the entire swarm to agree on a single coordinate system by using a

hierarchy (e.g. TAG tree [54]). (2) use a reactive method and store only the variance

(α) for each neighbor, and initiate a local correction each time a direction information is

received from neighbors. The use of the proactive or the reactive approaches are specific
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to the characteristic of the network and the application. Both approaches can be used with

our GCDL algorithm.

In this section, we presented our localization algorithms. GDL performs localiza-

tion in single step of the motion by use of a compass on each node, while GCDL performs

localization without the use of a compass, following a 2-step motion.

4.3 An example sensor network mobility algorithm

Our algorithms are most useful in mobile applications where the entire network

must move in a specific path in order to accomplish a goal. To analyze the behavior of our

localization algorithms in a realistic mobility scenario, we adapt a mobility model based on

the Reference Point Group Mobility (RPGM) model [42]. Although we considered a range

of mobility models[19], we decided to base our analysis on RPGM due to its generality

and simplicity. Here, the random motion of the individual nodes is modeled in relation to a

randomly chosen directional motion of the entire group. Each node in the group moves ran-

domly around a fixed reference point and the entire group of reference points moves along

the group’s logical center. Our localization algorithms computes locations and orientations

for nodes and their neighbors. In that respect, we further generalize the RPGM model so as

to make individual sensors independent of the reference points. Furthermore, because our

sensor network can maintain a semi-rigid structure based solely on local positioning, it is

unnecessary for nodes to be aware of the group’s center and only the destination point must

be specified. It is possible to remove the reference points because the individual random

motion within the group is contextualized by the random motion of a node’s immediate

(one-hop) neighbors. In that sense, the neighbors represent the reference points of motion.

The mobility algorithm we use for directed motion is presented in Figure 4.7. The

network moves with respect to a direction vector ~D. To maintain a semi-rigid formation

without disconnecting the network, we impose a minimum neighbor count k that each

node strives to attain. This is a best-effort algorithm where nodes attempt to maintain
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MOVENODE(NODE N, NEIGHBORLIST NL,

DIRECTIONVECTOR ~D, INT k, RANGEFACTOR RF)

1: ~V ← 0

2: count← 0

3: for each localized neighbor n in NL do

4: /* ~uN,n is the vector from N to n */

5: ~V ← ~V + ~uN,n

6: count← count + 1

7: end for

8: if count < k then

9: RF ← RF /2

10: end if

11: ~V ← (RF ∗ range(N) ∗ ~V + ~D)/(count + 1)

12: Move node N by ~V

Figure 4.7: The mobility algorithm we use for directed motion. RF is the fraction

of the wireless range; used by nodes as an ideal distance with their neighbors, and

range(NodeN) is the wireless range of the given node.

a neighbor distance that is a fraction of their wireless range. The neighbor distance is

adjusted dynamically with the number of neighbors so that nodes with neighbors fewer

than k stay closer while still moving with the network. This avoids network partitioning

especially at the perimeter of the network. Localization of the one-hop neighbors is a pre-

requisite for the mobility algorithm to run efficiently. However, the algorithm does not

strictly require all neighbors to be localized, it considers only the localized neighbors and

performs the necessary calculations based on these. The range(Node N) function returns

the wireless range in distance of the given node. When a boundary is reached, a new

direction of movement must be chosen. In our simulations, we implement this as a ricochet

off the boundary surface.
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The benefit of our approach is that while an initial direction of motion is specified

for the group, the structure of the network remains cohesive but independent. An example

application of this approach is a swarm of mobile sensors which move in a general pattern

with a specific goal. For example, a swarm of mobile senors may move in a zig-zag pattern,

with the goal to discover an oil spill and cover the contaminated area once it is found. In

this example, only a virtual boundary must be specified and the network of sensors will

maintain sufficient proximity to communicate, while covering the area.

The mobility algorithm presented in this section is a general network movement

algorithm that requires only local position information. Our localization algorithms require

each node to communicate only with its direct neighbors thus no message broadcast is

required. In this respect, other mobility algorithms can be plugged in to perform various

tasks using our localization algorithms.

4.4 Experiments

In this section, we evaluate our algorithms in three different type of experimental

settings. First, in Section 4.4.1 we evaluate properties specific to our GDL algorithm under

various simulated error settings, and show that the environment errors do not dominate the

performance of our algorithm. Later, in Section 4.4.2 we evaluate our GCDL algorithm

under various errors and observe how the errors affect the accuracy of the localization and

common north resolution algorithms. Finally, in Section 4.4.3 we compare both our algo-

rithms against an Absolute Positioning algorithm in various random and directed mobility

scenarios, and observe the effects of cumulative errors on the localization algorithms and

the coherent movement of the swarm.

4.4.1 Evaluation of the GDL algorithm

We initially present results from the GDL algorithm under ideal conditions, with-

out measurement errors. Subsequently, we introduce independent errors on angle and dis-
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Figure 4.8: Percent of non-localized nodes for different node densities.

tance measurements to simulate real world disturbances.

Experiments under ideal conditions In this experiment we simulate nodes randomly

placed in a 100x100 area under a uniform spacial distribution. Each simulation is run

for 100 epochs, and the results are averaged. At each epoch, nodes perform a random

walk with random speed [0, 5), random angle [0, 2π) and fixed radio range of 6. Node

density represents the number of nodes over the total deployment area. GDL requires

two neighbors to accurately find neighbor positions. Figure 4.8 displays the percentage of

nodes, whose positions are not calculated accurately for different node densities. For small

node densities, we observe that not all nodes can be localized. The reason is that nodes do

not have neighbors to calculate positions, or do not have common neighbors. As we can see

from Figure 4.8, the percent of non-localized nodes approaches zero for densities greater

than 0.02. From this graph we can conclude that our algorithm calculates node positions

for dense networks, and introduces minor node localization failures, less than as 3%, for

sparse networks.

Introducing measurement errors We now relax the ideal condition assumption and in-

troduce errors on distance and angle measurements. In the real world, measurements may
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Figure 4.9: Effects of angle and distance measurement noise on position error (a), and

percent of non-localized nodes (b), for GDL
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be quite inaccurate due to weather, terrain conditions and equipment failures. To simulate

these errors, we add uniform random noise to all our measurements. For distance measures

we add percent error relative to the measured value, and for angle measures we add abso-

lute percent error (percent of 2π) to the measured value. Introducing the errors changes our

algorithm’s behavior in one of two ways: (1) the algorithm calculates the positions with

limited accuracy; or (2) excessive error configurations (defined in Section 4.2) prevent the

algorithm from localizing some of the nodes. Figure 4.9 (a) shows the average position er-

ror of our algorithm for different values of noise on angle and distance measurements. The

effects of excessive error configurations on our algorithm appear in Figure 4.9 (b). From

this figure we can see that even with 30% noise on angle and distance measures, which is a

quite high error rate for real world conditions, the number of non-localized nodes is at most

16%. These results indicate that our GDL algorithm provides sufficient node localization.

We further corroborate this claim by carrying out tests in random and directed movement

scenarios in Section 4.4.3.

In order to evaluate the effects of movement speed and wireless range we tested

our GDL algorithm under high noise, with a fixed wireless range (10) and variable speed

values for nodes.1 We apply an upper limit on the speed, such that the nodes do not move

a distance greater than their wireless range per epoch. In any sensor network scenario, if a

node moves by a distance greater than its wireless range in one epoch, it is highly probable

that its neighborhood will change at each step, which would make it impossible to localize.

We can see in Figure 4.10 that the localization error of our algorithm is nearly constant for

increasing speed of nodes. The maximum speed supported by our algorithm is the wireless

range distance per epoch which is 10 units per epoch in this experiments.

1As our GCDL algorithm performs a lock-step motion, we exclude GCDL from this movement speed
experiment.
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Figure 4.10: Mean and standard deviation of position error of GDL vs. speed of nodes with

a wireless range of 10 units and speed measured in units per epoch.

4.4.2 Evaluation of the GCDL algorithm

In this section, we evaluate the affects of various environment errors on the com-

mon north resolution method of our GCDL algorithm. We use the average difference be-

tween the real and the calculated norths of each neighbor per epoch as the metric to measure

the common north error of the swarm.

We first evaluate whether the duration of the movement affects the common north

error. We simulate 100 nodes in a 100x100 area. In random motion, nodes can cover at most

5 units and have a fixed radio range of 15. We assume that in directed motion nodes move

at a maximum speed of 3 units per epoch and the radio range is set to 5. All experiments

are performed 100 times, and the average values are displayed. We test our algorithm for

two different uniform random noise levels: high and low as well as in random motion and

directed motion scenarios. High noise level is up to±30% of distance measurements and up

to±2π/10 of angle measurements. Low noise level is up to±3% of distance measurements

and up to ±2π/100 of angle measurements. In this experiment, after each epoch, nodes

resolve the common north variance with their neighbors and the average error per node is

calculated. Figure 4.11 shows that for both random and directed movement scenarios, the
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Figure 4.11: Effect of number of epochs on selected common north angle, (a) random

motion, and (b) directed motion, for GCDL

average error on common north remains constant throughout the total number of epochs.

This is expected as we do not store any information other than the current motion. All

calculations are performed from scratch based on the new neighborhood after the 2-step

motion. Thus, GCDL is free from incremental errors.

Having established that the common north error is not affected by the number

of epochs, we vary the distance and angle measurement noise and see how these changes

affect the common north error in Figure 4.12. In this figure, we can observe that the amount

of noise on the angle and the distance measurements both affect the common north error of

the GCDL algorithm. The common north error is zero for environments free of error, and

the error increases linearly with the angle and distance errors when they are introduced.

For a low noise level, the common north errors are approximately 10◦ and 2◦ respectively

for random and directed motion. For a high noise level, the errors become approximately

34◦ and 14◦, respectively.
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Figure 4.12: Effects of angle and distance measurement noise on selected common north

error in degrees, (a) random motion, and (b) directed motion, for GCDL. The distance and

angle noise axises show the percent error over the actual measurement.
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4.4.3 Comparison with an absolute positioning algorithm

In previous sections, we present experiments to test the specific properties of each

of our algorithms. In this section, we compare our algorithms with an Absolute Positioning

algorithm. In such an algorithm, we assume that nodes know their initial positions in the

deployment area, thanks to an anchor point or any other global positioning infrastructure.

We also assume that once nodes get their initial position, they do not receive any additional

positioning information, relative or absolute. To this effect, nodes keep track of their own

movements. By exchanging location information with immediate neighbors, each node is

able to keep track of the positions of others. This scenario occurs when nodes are deployed

from a known position and asked to explore a possibly remote area where they cannot

maintain communication with the anchor at the deployment position.

We simulate two different mobility scenarios. The first is based on random move-

ment, where 100 nodes with fixed radio range 15 can cover a distance of at most 5 units

per epoch. The second scenario is the directed movement described in Section 4.3. Nodes

sweep the area in a zig-zag manner, with radio range 5 and maximum per-epoch distance 3.

An example trajectory of the nodes in the directed movement scenario is shown in Figure

4.16. There is no global path information available, rather, the nodes detect the boundaries

of the environment and make movement decisions as a response to these environmental

readings.

In Figures 4.13 and 4.14, we show the average errors for all algorithms over the

progression of up to 4,000 rounds, for two different uniform random noise levels: high

and low, in random motion (Figure 4.13) and directed motion (Figure 4.14) scenarios.

Since our algorithms calculate distances within each epoch and do not use any cumulative

data, the error of our algorithms are nearly constant over the number of epochs, for both

scenarios. Although the absolute positioning algorithm starts with a low error value, small

measurement errors accumulate over each epoch and cause an ever-increasing error. The

mean error of the GDL is as much as 2 times and the mean error of the GCDL is as much

as 10 times lower than the mean error of the absolute positioning algorithm. The high
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Figure 4.13: Mean and standard deviation of position error vs. number of epochs for our

algorithms and the absolute positioning algorithm performing random movement, using

different levels of noise. The error of the absolute positioning algorithm increases with the

number of epochs while the error of our algorithms are almost constant, which is attributed

to the memoryless property of our algorithms.
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algorithms and the absolute positioning algorithm performing directed movement, using
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number of epochs while the error of our algorithms is almost constant, which is attributed

to the memoryless property of our algorithms.
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Movement GDL GCDL

Random 1.95 ms 1.08 ms

Directed 2.06 ms 1.12 ms

Figure 4.15: Average time in milliseconds (ms) spent for localization calculations in core

GDL and GCDL algorithms.

error values in the absolute positioning algorithm reflect on the effects of cumulative errors

and show that it is not a robust solution for high noise scenarios. On the other hand, our

localization algorithms provide consistent behavior in the above-mentioned scenarios.

Figure 4.15 presents the average CPU time each node spent calculating Equations

(4.4) and (4.6) in GDL and Equations (4.14) and (4.18) in GCDL, for both random and

directed mobility scenarios. Since we do not have access to the real sensor hardware, we

ran the experiments on a Pentium IV 3 GHz machine and present the average time spent per

localization in order to compare the performance of our algorithms. As we can see from

the figure, the CPU overhead is less for GCDL compared to GDL, which is a direct result

of the number of calculations required by each algorithm.

In Figures 4.17, 4.18 and 4.19 we present the snapshots of the simulations of the

absolute positioning algorithm, our GDL and GCDL algorithms, respectively, performing

a zig-zag directed movement (as in Figure 4.16) under high noise. All simulations use the

same movement algorithm as described in Section 4.3. Because of the cumulative errors,

the absolute positioning algorithm is not capable of maintaining the topology of the net-

work and becomes disconnected. On the other hand, our algorithms maintain connectivity

at all times while forming a nice semi-rigid topology, which complies with one of our main

goals to enable coherent movement of nodes as a swarm even under high noise. The snap-

shot results for GCDL algorithm is more ”packed” than its GDL counterpart. This behavior

is caused by the separation of nodes into two groups. Since only nodes in opposite groups

localize each other, each node maintains its distance to the nodes in the opposite group and
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Figure 4.16: Directed trajectory of nodes performing zig-zag movement.

tends to stay closer with nodes in its group. Even in this case, GCDL succeeds to maintain

the connectivity and semi-rigid topology of the swarm. The results in Figures 4.13, 4.14,

4.18, and 4.19 also support our claim that even under high noise settings, environmental er-

rors do not deteriorate our algorithm’s behavior; effects of these errors are constant through

epochs. As seen in Figure 4.18, occasionally a few nodes (two in this case) disconnect from

the network. This happens when nodes near the network’s perimeter cannot be localized.

Although the number of these nodes is small, they can be further controlled by forcing

stricter k-neighborhood rules in the mobility algorithm.

4.5 Concluding remarks

We propose two algorithms to address the directional node localization problem

in wireless sensor networks. Our directional localization algorithms enable nodes to co-

ordinate their movement relative to their one-hop neighbors, and maintain a semi-rigid

structure throughout the movement of the swarm. During mobility, errors from measure-

ment devices used by the nodes or real world disturbances tend to accumulate overtime and

affect the structure of the swarm, eventually disorganizing it. To avoid this phenomenon,

our algorithms perform localization in a few epochs of the node movement and work only
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Figure 4.17: Snapshots of absolute positioning algorithm performing directed motion in

Figure 4.16.
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Figure 4.18: Snapshots of GDL algorithm performing directed motion in Figure 4.16.
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Figure 4.19: Snapshots of GCDL algorithm performing directed motion in Figure 4.16.
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with the data gathered within that time frame. We design our algorithms to work with lo-

cal knowledge only, without the use of any global positioning infrastructure such as GPS,

anchor points, and seed nodes. We tested our algorithms with various simulated real-world

errors, in both random and directional mobility scenarios and observed that they perform

coherent movement even in high noise scenarios.
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Chapter 5

Conclusion

In this thesis, we first propose a deterministic reservoir sampling algorithm (DRS)

designed to sample count data, which is quite common for data mining applications. With

extensive simulations we show that DRS generates samples with better accuracy and quality

than the previous algorithms.

Later, we investigate sampling as a data reduction method for wireless sensor

networks, and propose our Deterministic Weighted Sampling (DWS) algorithm. DWS is

a distributed weighted sampling algorithm which is simple enough to not consume too

many resources, and distributes the sampling work over the sensor network equally, thus

prevents any node from being a bottleneck. DWS is designed to work on arbitrary network

topologies, thanks to its weighted strategy. We also presented extensive simulation results

on synthetic and real-world datasets to show that DWS generates better quality samples

by using far less energy compared to previous sampling algorithms on wireless sensor

networks.

As the last part of this thesis, we propose two GPS-free node localization algo-

rithms. Our algorithms work with local knowledge only, without the use of a global posi-

tioning infrastructure. The algorithms are also designed to perform localization on demand,

in one or two steps of the motion, which makes them memoryless and avoids accumulation

of position error over time. We observe that the memoryless property of our algorithms are



89

most important when coherent movement of the swarm of nodes are required, since with-

out this property accumulation of error affects the localization accuracy and disorganizes

the swarm. Furthermore, we designed the algorithms to work under high measurement er-

rors and real world disturbances, excessively tested the algorithms with various simulated

real-world errors, and found them robust to the effects of these errors through time.

As a future work of this thesis, it is only natural to extend the data aggregation

method we propose here to mobile networks with the help of our localization algorithms. In

this new application, a dynamic aggregation tree will be built within the swarm connecting

the mobile sink with the rest of the nodes, while the whole swarm is mobile in order to

achieve a common goal. The dynamic aggregation tree will allow efficient data flow from

within the swarm to the sink as well as aid the communication of the sink node with the

rest of the swarm. The key challenge in this approach would be the frequent change in the

structure of the aggregation tree due to mobility. Our localization algorithms may help plan

the necessary modifications to the aggregation tree in order to keep it connected in mobility

scenarios.
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