
CE 350: LABWORK 1 2011-2012 SPRING

1. # reference: http://tldp.org/LDP/abs/html/sha-bang.html

The #! line in a shell script will be the first thing the command interpreter (sh or bash) sees. Since

this line begins with a #, it will be correctly interpreted as a comment when the command

interpreter finally executes the script. The line has already served its purpose - calling the command

interpreter.

If, in fact, the script includes an extra #! line, then bash will interpret it as a comment.

#!/bin/bash

echo "Part 1 of script."

a=1

#!/bin/bash

This does *not* launch a new script.

echo "Part 2 of script."

echo $a # Value of $a stays at 1.

2. # reference: http://tldp.org/LDP/abs/html/sha-bang.html

#!/bin/rm

Self-deleting script.

Nothing much seems to happen when you run this... except that the file

disappears.

WHATEVER=85

echo "This line will never print (betcha!)."

exit $WHATEVER # Doesn't matter. The script will not exit here.

 # Try an echo $? after script termination.

 # You'll get a 0, not a 85.

TO DO 1: Also, try starting a README file with a #!/bin/more, and making it executable.

3. # reference: http://tldp.org/LDP/abs/html/sha-bang.html

A script may begin with a #!/bin/env bash sha-bang line. This may be useful on UNIX machines

where bash is not located in /bin

TO DO 1: Try to modify the script to be done in 2
nd

 question as to include #!/bin/env more

TO DO 2: Try to modify the script given in 1
st
 question to be run by different shells.

http://tldp.org/LDP/abs/html/sha-bang.html
http://tldp.org/LDP/abs/html/sha-bang.html
http://tldp.org/LDP/abs/html/sha-bang.html

4. It is important to know that, once the script starts running it creates a child bash process. Check

the following example:

#!/bin/bash

echo "print working directory: `pwd`"

echo "now changing directory to .."

cd ..

echo "print working directory: `pwd`"

echo "once the script ends, check your pwd!"

5. You can save a command output to a variable using backquotes around the command: `command`

The following example saves the output to a variable, and uses it again.

#!/bin/bash

echo "Please enter your name!"

echo "WAIT! I have changed my mind!"

echo "I actually now it! Is it `whoami`?"

echo "Let me save it!"

isim=`whoami`

echo "your name is now saved in \$isim: $isim"

TO DO 1: In the last line what does \$ do? What is the difference between \$isim and $isim

when used with an echo line?

6. Write a script which lists the contents of the working directory and its parent directory.

