
CE350

Lecture5

PROGRAMMING THE BASH SHELL
PART I

by Kaya Oğuz and İlker Korkmaz

Programming the bash

● As pointed in syllabus document, there will be 5 lecture

weeks to cover the programming with bash scripts.

● This lecture is the first part on scripting in bash.

References

● The contents of this lecture are prepared with the help of

and based on:

– the textbook, UNIX Shells by Example

– the tutorial, Advanced Bash-Scripting Guide at

http://tldp.org/LDP/abs/html/

http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/

Contents of Lecture5

● The interactive bash shell's :

● Variables

● Quoting

● Arrays

● Standard I/O redirection

● Pipes

● Built-in commands

A note:

● From now on, for all related LAB works of the lectures on

scripting in bash shell, you shall make script files to put your

commands and script codes in.

Variables

● A variable is a tag/label/identifier/name in the program that

refers to a corresponding memory location.

● Some variables are defined by the user and some others

are special shell variables.

● There are two types of variables in bash:

– Local variables: known only to the shell in which they

were created.

– Environment variables: available to the new spawned

(forked) processes as well.

Naming conventions

● Variable naming conventions, or identifier rules, are

similar as used in programming languages.

● The simplest format for defining a local variable is to

use initialization.

● variableName=value

● decimalVariable=18

● If the name, or identifier, of a variable is variableName,

the reference to its value is $variableName

● $variableName is actually a simplified form of

${variableName}

● To set a variable to “null” (means no assigned value

and does not mean “zero”), the equal sign is to be

followed with a newline

● variableName=

Variable substitution

● To illustrate some script examples, which introduces the

variables, you may dissect Example 4-1 at

● http://tldp.org/LDP/abs/html/varsubn.html

http://tldp.org/LDP/abs/html/varsubn.html
http://tldp.org/LDP/abs/html/varsubn.html

The “declare” built-in

● “declare” is also used to declare a variable.

● declare variableName=value

● declare decimalVariable=18

● “declare” is a built-in command.

● Table 13.13 of the textbook explains the argument options

of the “declare” command.

● -r option makes variables read-only (can not be unset,

but can be reassigned).

● -i option makes variables integer types.

● -x option exports variable names to subshells.

Local variables

● Local variables of parent shell can not be accessed from the

child shell.

● Try to understand the “scope” concept.

● an example:

● $ round=world # a local variable in the shell

● $ echo $round # prints the value as “world”

● $ bash # a new shell starts

● $ echo $round # nothing to be printed !!

● $ exit # exits and returns to parent

● $ echo $round # prints “world”

Environment variables

● Table 13.14 lists the bash environment variables

● Environment variables of parent shell can be

inherited from the child shell.

– use “export” or “declare” with -x option

● export variableName=value

● OR

● variableName=value; export variableName

● OR

● declare -x variableName=value

An example

● $ NAMES=“Kaya and Ilker”

● $ export NAMES

● $ echo $NAMES # prints the value

● $ bash # a new subshell starts

● $ echo $NAMES # prints the value

● $ declare -x NAMES=“Ilker and Kaya”

● $ echo $NAMES # What gets printed?

● $ exit # returns to parent shell

● $ echo $NAMES # What gets printed?

Printing the values of the

variables

● To print the values of the variables, use

● The built-in echo command.

● OR

● The printf command, as same with its use in C

programming language, can be used to format the

printed output.

Bash variables are untyped

● You shall quickly read the subject at

● http://tldp.org/LDP/abs/html/untyped.html

http://tldp.org/LDP/abs/html/untyped.html
http://tldp.org/LDP/abs/html/untyped.html

TO DO AT HOME

● The two sections of the textbook, “variable expansion

modifiers” and “variable expansion of substrings” should be

read and Table 13.18 and Table 13.19 should be examined

at home.

● A reminder: TO DO parts will not be graded.

Quoting

● Quoting is used to protect special metacharacters from

interpretation.

● Three kinds of quoting:

● the backslash, \

● single quotes, ' '

● double quotes, “ “

The backslash

● \ is used to quote (or escape) a single character from

interpretation.

● $ echo CE350\? # prints CE350?

● \ protects the dollar sign ($), backquotes (` `), and the

backslash (\) from interpretation if enclosed in double

quotes.

● $ echo “\$25.00” # prints $25.00

● \ is not interpreted if placed in single quotes

● $ echo \\ # prints \

● $ echo '\\' # prints \\

● $ echo '\$25.00' # prints \$25.00

The single quotes

● Single quotes (' ') protect all metacharacters from

interpretation.

● $ echo hello CE350 # prints -> hello CE350

● $ echo 'bye “CE350”' # prints -> bye “CE350”

● To print a single quote, enclose it within double quotes or

escape it with a backslash.

● $ echo isn\'t it CE350'?' # prints -> isn't it CE350?

The double quotes

● “ ” will allow variable and command substitution, and protect

any other special metacharacters from being interpreted.

● $ lectureCode=CE350

● $ echo “Hello $lectureCode ! Time is $(date)”

● # What gets printed ??

Arrays

● Newer versions of bash provides the shell with one

dimensional arrays, which allow the script programmers

collect a list of words into a variable name.

● To introduce the array in a script:

● declare -a arrayName=(item1 item2 ...)

● OR

● myArray[4]=100 # no maximum size limit

here, the size of myArray is 1

● The order may be changed at initialization:

● array=(ilker [2]=kaya [1]=korkmaz [3]=oguz)

● to extract an element of an array:

● use ${arrayName[index]}

A little more about arrays

● $ declare -a myArray

● $ myArray=(first second third fourth)

● $ echo ${myArray[0]} # the first element in myArray

● $ echo ${#myArray[0]} # the length of the first element

● $ echo ${#myArray} # the length of the first element

● $ echo ${#myArray[*]} # the number of elements in myArray

● $ echo ${#myArray[@]} # the number of elements in myArray

● $ unset myArray # OR unset ${myArray[*]}

Standard I/O redirection

● The shell inherits 3 files at the starting phase:

● stdin, stdout, stderr

● Through the use of I/O redirection

● inputs can be read from a file

● outputs or errors can be sent to a file

● Table 13.23 lists the redirection operators.

● command < file # redirects input

● command > file # redirects output

● command >> file # redirects and appends output

● command 2> file # redirects error

● command 2>> file # redirects and appends error

● command 1>&2 # redirects the output to where error is going

● ...

Redirection using exec

● The exec command can be used to replace the current

program with a new one without starting a new process.

● If you try “ exec date ” in the current shell, “date” executes in

place of the current shell and the shell would not return

since the user would be logged out.

● Redirection using exec is explained in Table 13.24 as

follows:

● $ exec < inputFile # standard input is to be inputFile

● $ exec > outFile # standard output is to be outFile

● $ exec 3< inFile # opens inFile as file descriptor 3 for reading input

Pipes

● A pipe takes the output from the command on the left-hand

side of the pipe symbol (|) and sends it to the input of the

command on the right-hand side of the symbol. A pipeline

can consist of more than one pipe.

● $ pwd | wc -l

● the same as: $ pwd > tmp; wc -l tmp

Bash shell built-in commands

● The bash shell includes many built-in commands within its

source code.

● The built-in commands are not located in disk, which makes

the execution faster.

● Table 13.28 lists the shell built-in commands and their

objectives.

● help command provides the user with the help for the

features of any built-in command.

