CE350
Lectureb

PROGRAMMING THE BASH SHELL
PART I

by Kayva Oguz and Ilker Korkmaz

Programming the bash

. As pointed in syllabus document, there will be 5 lecture

weeks to cover the programming with bash scripts.

. This lecture is the first part on scripting in bash.

References

. The contents of this lecture are prepared with the help of

and based on:
— the textbook, UNIX Shells by Example
- the tutorial, Advanced Bash-Scripting Guide at
http://tidp.org/LDP/abs/html/

http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/

I Contents of Lectureb

. Variables

. Quoting

. Arrays

. Standard 1/O redirection
. Pipes

. Built-in commands

I . The interactive bash shell's :

A note:

From now on, for all related LAB works of the lectures on
scripting in bash shell, you shall make script files to put your
commands and script codes in.

Variables

. Avariable is a tag/label/identifier/name in the program that
refers to a corresponding memory location.

Some variables are defined by the user and some others
are special shell variables.

There are two types of variables in bash:

— Local variables: known only to the shell in which they
were created.

- Environment variables: available to the new spawned
(forked) processes as well.

Naming conventions

. Variable naming conventions, or identifier rules, are

similar as used in programming languages.

. The simplest format for defining a local variable is to

use initialization.

. variableName=value

. decimalVariable=18
If the name, or identifier, of a variable is variableName,
the reference to its value is $variableName

. $variableName is actually a simplified form of

${variableName}

. To set a variable to “null” (means no assigned value

and does not mean “zero”), the equal sign is to be

followed with a newline
_variableName=

Variable substitution

. To illustrate some script examples, which introduces the

variables, you may dissect Example 4-1 at
. http://tldp.org/LDP/abs/html/varsubn.html

http://tldp.org/LDP/abs/html/varsubn.html
http://tldp.org/LDP/abs/html/varsubn.html

The “declare” built-in

“declare” is also used to declare a variable.
. declare variableName=value
. declare decimalVariable=18
“declare” is a built-in command.

. Table 13.13 of the textbook explains the argument options

of the “declare” command.
. -r option makes variables read-only (can not be unset,
but can be reassigned).
. -1 option makes variables integer types.
. -X option exports variable names to subshells.

L ocal variables

Local variables of parent shell can not be accessed from the

child shell.
. Try to understand the “scope” concept.
. an example:

. $round=world # a local variable in the shell
. $ echo $round # prints the value as “world”

. $ bash # a new shell starts
. $ echo $round # nothing to be printed !!
. $ exit # exits and returns to parent

. $ echo $round # prints “world”

I Environment variables

. Environment variables of parent shell can be
iInherited from the child shell.
— use “export” or “declare” with -x option
. export variableName=value
. OR
. variableName=value; export variableName
. OR
. declare -x variableName=value

I . Table 13.14 lists the bash environment variables

An example

. $ NAMES=“Kaya and llker”

. $ export NAMES

. $echo SNAMES # prints the value

. $ bash # a new subshell starts
. $ echo SNAMES # prints the value

. $ declare -x NAMES=“llker and Kaya”

. $echo SNAMES # What gets printed?

. 3 exit # returns to parent shell
. $echo SNAMES # What gets printed?

Printing the values of the
variables

. To print the values of the variables, use

. The built-in echo command.
. OR
. The printf command, as same with its use in C

programming language, can be used to format the
printed output.

Bash variables are untyped

. You shall quickly read the subject at

. http://tldp.org/LDP/abs/html/untyped.html

http://tldp.org/LDP/abs/html/untyped.html
http://tldp.org/LDP/abs/html/untyped.html

TO DO AT HOME

. The two sections of the textbook, “variable expansion
modifiers” and “variable expansion of substrings” should be
read and Table 13.18 and Table 13.19 should be examined
at home.

. Areminder: TO DO parts will not be graded.

Quoting

. Quoting is used to protect special metacharacters from

Interpretation.

. Three kinds of quoting:

. the backslash, \
. single quotes,
. double quotes,

(131

The backslash

. \Is used to quote (or escape) a single character from

Interpretation.
. $ echo CE350\? # prints CE3507?

. \ protects the dollar sign ($), backquotes ("), and the

backslash (\) from interpretation if enclosed in double
guotes.

. $ echo “$25.00” # prints $25.00

. \Is not interpreted if placed in single quotes

. $echo\\ # prints \
. $ echo '\ # prints \\
. $ echo \$25.00" # prints \$25.00

The single quotes

. Single quotes (' ') protect all metacharacters from

Interpretation.
. $ echo hello CE350 # prints -> hello CE350
. $ echo 'bye “CE350™ # prints -> bye “CE350”

. To print a single quote, enclose it within double quotes or

escape it with a backslash.
. $ echoisn\'t it CE350'?" # prints -> isn't it CE3507?

The double quotes

€k

will allow variable and command substitution, and protect
any other special metacharacters from being interpreted.
. $ lectureCode=CE350
. $ echo “Hello $lectureCode ! Time is $(date)”
. # What gets printed ??

Arrays

Newer versions of bash provides the shell with one
dimensional arrays, which allow the script programmers
collect a list of words into a variable name.

. To Introduce the array in a script:

. declare -a arrayName=(item1 item2 ...)
. OR
. myArray[4]=100 # no maximum size limit
here, the size of myArray is 1
. The order may be changed at initialization:
. array=(ilker [2]=kaya [1]=korkmaz [3]=0gquz)

. to extract an element of an array:

. use ${arrayNamel[index]}

A little

more about arrays

$ declare -a myArray
$ myArray=(first second third fourth)
$ echo ${myArray[0]} # the first element in myArray

$ echo ${#myArray[0]} # the length of the first element
$ echo ${#myArray} # the length of the first element
$ echo ${#myArray[*]} # the number of elements in myArray
$ echo ${#myArray[@]} # the number of elements in myArray

$ unset myArray

OR unset ${myArray[*]}

Standard I/O redirection

. The shell inherits 3 files at the starting phase:

. stdin, stdout, stderr

. Through the use of I/O redirection

. Inputs can be read from a file
. outputs or errors can be sent to a file

. Table 13.23 lists the redirection operators.

command < file # redirects input

command > file # redirects output

command >> file # redirects and appends output
command 2> file # redirects error

command 2>> file # redirects and appends error
command 1>&2 # redirects the output to where error is going

Redirection using exec

The exec command can be used to replace the current
program with a new one without starting a new process.
If you try “ exec date " in the current shell, “date” executes in
place of the current shell and the shell would not return
since the user would be logged ouit.
Redirection using exec Is explained in Table 13.24 as
follows:

. $ exec < inputFile # standard input is to be inputFile

. $ exec > outFile # standard output is to be outFile

. $ exec 3< inFile # opens inFile as file descriptor 3 for reading input

Pipes

. A pipe takes the output from the command on the left-hand
side of the pipe symbol (|) and sends it to the input of the

command on the right-hand side of the symbol. A pipeline
can consist of more than one pipe.

. $ pwd | wc -I
. the same as: $ pwd > tmp; wc -l tmp

I Bash shell built-in commands

. The bash shell includes many built-in commands within its

source code.

. The built-in commands are not located in disk, which makes

the execution faster.

. Table 13.28 lists the shell built-in commands and their

objectives.

. help command provides the user with the help for the

features of any built-in command.

