
CE350

Lecture7

PROGRAMMING THE BASH SHELL
PART III

by İlker Korkmaz and Kaya Oğuz

Programming the bash

●As pointed in syllabus document, there will be 5 lecture weeks

to cover the programming with bash scripts.

●This lecture is the 3rd part on scripting in bash.

References

●The contents of this lecture are prepared with the help of and

based on:

–the textbook, UNIX Shells by Example (Chapter3, and

Chapter4)

–the tutorial, Advanced Bash-Scripting Guide at

http://tldp.org/LDP/abs/html/

http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/

Contents of Lecture7

● Regular expressions

● grep

Just a review example on the

previous lecture concepts

● http://tldp.org/LDP/abs/html/randomvar.html

● Example 9.11

http://tldp.org/LDP/abs/html/randomvar.html
http://tldp.org/LDP/abs/html/randomvar.html

Regular Expressions

● A Regular Expression (RE) is a pattern of characters used

to be matched in a search.

● In vi, RE patterns are enclosed in forward slashes:

● /patternWord/

RE metacharacters

● RE metacharacters are explained with some pattern

examples in Table 3.1. Some RE metacharacters are:
● ^ : /^love/ #matches all lines beginning with pattern love.

● $: /love$/ #matches all lines ending with love.

● . : /l..e/ #matches lines containing l, followed by 2 characters,

followed by an e.

● * : / *love/ #matches zero or more of the preceding character,

space, followed by the pattern love.

● [] : /[Ll]ove/ # matches lines containing Love or love.

● [x-y] : /[A-Z]ove/ #matches any letter from A through Z followed

by ove.

● [^] : /[^A-Z]/ #matches any character not in the range between A

and Z.

● \ (escape metacharacter): /love\./ #matches exactly pattern

“love.”

RE-match operator in bash

=~

● After version 3, RE-match operator, =~, is available for

bash.

● Some examples:
● http://tldp.org/LDP/abs/html/bashver3.html#REGEXMATCHREF

● if [["$1" =~ "[a-zA-Z][a-zA-Z]$"]] # Ends in two alpha chars?

● if [[$mail =~ "^From "]] # Match "From" field in mail message.

● if [["$line" =~ ^[a-z]]]

● then # line begins with lowercase character.

http://tldp.org/LDP/abs/html/bashver3.html
http://tldp.org/LDP/abs/html/bashver3.html
http://tldp.org/LDP/abs/html/bashver3.html

grep

● The grep family consists of the commands grep, egrep, and

fgrep.

● grep
● globally searches for regular expressions and prints out the

lines.

● egrep
● extended grep

● supports more regular expression metacharacters

● fgrep
● fixed grep OR fast grep

● treats all characters as literals, which means no metacharacters

How grep works

● NOT to be used with / /

● as /patternWord/ written in vi

● To be used as: grep patternWord File

● OR grep 'patternWord' File

● patternWord is to be searched in File

● If grep is successful, the line from the file will appear

on the screen and grep returns an exit status of 0.

● If the related pattern is not found in file, no output will

appear and grep returns an exit status of 1.

● If the file is not a legitimate one, an error will be sent

to screen and grep returns an exit status of 2.

● If the fileName is not given grep assumes that it is

getting the input from either stdin or a pipe.

● ps -ef | grep ilker

grep's RE metacharacters

● Table 4.1 explains grep's RE metachars.

● ^, $, ., *, [], [^], \<, \>, \(..\), x\{m\}, x\{m,\}

● In textbook,

● Try to understand Examples 4.11, 4.12, 4.14, 4.16,

4.17, 4.18, 4.21, and 4.28.

grep options

● Check your man pages or help pages for a complete list of

grep options available on your UNIX/Linux version.
● man grep

● OR grep --help

● -n option precedes the output line with the number of

the line the pattern was found.

● -i option turns off the case sensitivity.

● -w option finds the pattern if it is a word, not part of a

word.

● -v option prints all lines not containing the given pattern.
● What is the goal below?

– grep -v 'ilker korkmaz' myFile > temp

– mv temp myFile

● -c option prints the total number of lines where the

pattern was found.

More grep examples

● Table 4.3 in the textbook shall be examined interactively

with the students.

egrep

● Extended grep (egrep) provides additional regular

expression metacharacters. However, \(\) and \{ \} are not

allowed.

● + : '[a-z]+ove' #matches one or more lowercase letters,

followed by ove.

● ? : 'lo?ve' #matches for an l followed by either one or zero

o, followed by ve.

● a|b : 'love|hate' #matches for either love or hate

● () : groups characters such as in

– 'love(able|ly)'

fgrep

● fixed grep or fast grep

● fgrep does not recognize any metacharacter as being

special.

● fgrep '[A-Z]**[0-9].$5.00' File

– The literal string [A-Z]**[0-9].$5.00 is to be

matched.

GNU grep

● Linux uses GNU grep.

● In Linux, rgrep (recursive grep) is also available, which is not

a member of the UNIX grep family.

● GNU grep contains two sets of RE metacharacters:

● basic set: regular version; grep, OR grep -G.

● extended set: egrep OR grep -E

● Regular grep may also use an extended set

metacharacter with a backslash preceded to it:
● \?, \+, \|, \(\)

GNU grep formats

● Table 4.6 shows GNU grep formats.

● grep 'pattern' File #default is basic RE set

● grep -G 'pattern' File #same as above

● grep -E 'pattern' File #extended RE set

● grep -F 'pattern' File # fgrep, no RE

● grep -P 'pattern' File

● # -P option interprets the pattern as a Perl RE

rgrep (grep -R)

● Linux's recursive grep (rgrep) can recursively descend a

directory tree.

● grep -r 'ilker' ./myDir

● OR

● rgrep 'ilker' ./myDir
– searches recursively for all files under ./myDir directory.

A quick quiz:

● What would be the output of the following commands?

(Example 4.47)
– egrep 'Sh|u' dataFile

– grep –E 'Sh|u' dataFile

– grep 'Sh\|u' dataFile

TO DO:

● The next lecture, Lecture8, will include RE examples with

the editor sed. So, try to dissect many RE examples before

the next lecture.

● Do the LAB exercises given on page 124 of the textbook.

