
CE350 

Lecture9

PROGRAMMING THE BASH SHELL
PART V

by İlker Korkmaz and  Kaya Oğuz



Programming the bash

●As pointed in syllabus document, there are 5 lecture weeks to 

cover the programming with bash scripts.

●This lecture is the last part on programming the bash shell.



References

●The contents of this lecture are prepared with the help of and 

based on:

–the textbook, UNIX Shells by Example (Chapter15)

–the tutorial, Advanced Bash-Scripting Guide at 

http://tldp.org/LDP/abs/html/

http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/


Contents of Lecture9

● Debugging shell scripts



Why to cover the debugging 

subject ?

● Chapter15 of the textbook, UNIX Shells by Example, aims to

provide the debugging concept for finding, fixing, and

understanding some types of errors that cause shell scripts

to misbehave.

● Although they have a successful script, the system

administrators will usually want to make it better to maintain.

In this sense, tracing the script may be helpful.

● Therefore, a good script is not only a successful one, but

owns the good style issues as well.



Lecture design

● At first, the style issues are introduced.

● Secondly, the types of errors are categorized.

● Finally, tracing options for debugging the running codes are

presented.

● At the end of the lecture, your common mistakes on styling

issues are listed according to the observation on your HW

and LAB works submitted.



Style Issues

● To be written in a good style is an important issue for any

program in deed.

● A good style in script design can be helpful to quickly find

possible bugs in the scripts.

● Even the script does not include any bug, which is an

unrealistic property according to the philosophy of program-

bug relation, it could be easily readable and also

maintainable if it is written in a good style.

● So, what are the style issues for a script?



Commenting

● As the first style issue, put helpful comments in your scripts

to maintain them later in the future without spending any

extra time to understand the objectives of them.



Variable naming

● Define variables with meaningful names and put them at the

beginning point of their scope, which is generally the top of

the script.

● Pay attention to case sensitivity.

● Assure that your script does not include any variable with an

identifier name among the reserved words.



Indentation

● Use indentation in the code.

● Whenever you use a conditional or looping command,

indent the block of statements that follows, at least one tab

stop.



Echoing

● Use the echo command in areas where you suspect of any 

syntax error to trace the program execution.



Logic correctness

● The programs may contain some logic errors, even a

program runs without any syntax error.

● The operators are the possible logic error sources. Some

operators have different use in different shells.



Robustness

● To make your program robust test it carefully.

● Check your script for any possible human error, such as bad

input, insufficient arguments, nonexistent files, and so on.



Simplicity

● Try to implement the script in a simple way.

● Also when testing your script, keep simplicity. As an

illustration, a test on the syntax of the function may be

handled via trying it within a short script to check whether

the result is similar to the expected one or not.



Command know-how

● Know the commands of the OS.

● Know the commands of the shell.

● If you are new to a command, try it on the command line

before using in a script.

● By the way, try to understand the behavior of the command,

such as what it returns, what the exit code of its is.

● Also try to understand the OS behavior while issuing the

commands, such as how the variables are interpreted in

your OS, how to redirect output and errors in your OS.



System administrator 

responsibility

● If you are an administrator of a system, test your any script 

carefully before taking it to the system level. An unexpected 

error could bring a whole system to its knees.



Types of errors

● Runtime errors

● Logical errors



Runtime errors

● Syntactical errors

● Mismatched quotes

● Misspelled errors

● Bad script name,

● Permission issues,

● Path problems,

● ...



Naming conventions

● If you have a script with a name of ls, when you try

ls in the command line which ls will be executed?
● It depends on which ls is found in the path first.

● which command tells you the path where the

named program is found.

● So, avoid using the following command names as

to be filenames.
● test

● script

● ls

● ...

● You can also try the script with a leading ./ to run the script

in the current directory.



Insufficient permissions

● Check the permissions of the files.

● The scripts need an execute permission to be run.

● $ ls -l myScript

● chmod ...



Path problems

● If you have a superuser account, it is recommended, for 

security reasons, that you do not include a dot in the search 

PATH variable.

● There are two alternatives:

● Give the explicit path:

● $ ./myScript

● Precede the name of the script with the name of the 

shell

● $ bash myScript
● # The shell automatically checks the current directory for 

myScript



The shbang line

● Shbang ( #! ) line as the first line of a script.

● The path following the shbang notation is the location of the

shell that will be invoked to interpret the script.

● If the shbang is put at any top line except the first line of the

script, the line will be ignored to be interpreted.



Sneaky alias

● Remember any alias you defined previously.

● You may delete an alias if you do not need it anymore.

● unalias ...



Two reminders:

● 1. Check page 985 of the textbook for what you need to 

know about quotes.

● 2. Check page 999 for common bash error messages.



Tracing the script execution

● By using the -n option to the bash command, you can check 

the syntax of your scripts without really executing any 

command.

● If there is a syntax error in the script, error will be 

reported, nothing will be displayed otherwise.

● $ bash -n myScript
● interprets but does not execute commands

● The two usual debugging methods of any script are as 

follows:

● $ bash -x myScript
● displays each line of myScript after variable substitutions and 

before execution

● $ set -x
● turns on echo



Demos for debugging:

● #!/bin/bash

● total=0

● cnt=0

● for i in $(cat myNumbers.dat)

● do

● let total=$total+$i

● let cnt=$cnt+1

● echo $total

● done

● echo "cnt:  $cnt"

● declare -i avg

● avg=$total/$cnt

● echo "avg: " $avg

● # myScript.sh file contains the code above. Try followings:

● $ bash -n myScript.sh

● $ bash -x myScript.sh

● $ bash myScript.sh



Suggestions according to your 

HW-LAB answers
● 1- You may use a text editor that provides coloring the reserved words of the shell. (By this

way, you may prevent using the conflicting identifiers that are introduced as to be

keywords within the editor; you may also see any syntax error while writing your scripts if

the editor has the feature to color any errors.)

● 2- Indent your scripts. (By this way, you may at least see the blocks clearly.)

● 3- Test your scripts many times. (By this way, you may catch some unexpected runtime

errors.)


