
Qt

İlker Korkmaz & Kaya Oğuz
CE 350

Qt?

● Qt: Cute

● I'm a Qt programmer → cute programmer

● Write code once to target multiple platforms (Embedded

Linux, Mac OSX, Windows, Linux/X11, Windows Mobile,

Windows CE, Symbian, Maemo and MeeGo.)

● Do more with less and faster

● Use integrated developer tools

● Has great documentation

Who uses Qt?

● Nokia

● Opera web browser

● Skype Instant Messenger

● ASUS EeePC

● Samsung Digital Photo Frame

Qt SDK

What do I need?

● You need to know C++ & Object Oriented Programming

(there are bindings to other languages: Python, Java etc.)

● Download libraries (on Linux, they might be already there)

● Qt Designer and Qt Assistant may be used to create a

simple application.

Before going further

● A GUI application runs in an infinite loop

● It waits for the user to interact with the application; click a

button, or use a shortcut etc.

● These interactions are called events. GUI applications are

event-driven.

● To handle events, you bind the event to a function.

● When there is click on a specific button, a certain function

(of a class) has to be called.

Before going further (2)

● These events and bindings are handled by Qt's signal and

slot system.

● It is very simple; any object of a class can emit a signal and

this signal can be connected to a slot (function) of any object

of any class.

● A signal can be connected to more than one slot.

● A slot can have many signals connected to it.

User Interface

● Use Qt Designer to add widgets.

● The designer saves the file with the extension ui, in XML

format.

● When compiling, Qt uses uic (user interface compiler)

program to convert this file to C++ code.

● To use this C++ code, you should inherit a new class from it

and develop using that class; therefore, when there is a

change to UI, your work will be saved.

MOC

● To define signals and slots, you write:
Q_OBJECT

public slots:

● And define the slot as a regular C++ member function.

● However, C++ compiler would give an error to “public slots”.

● Qt uses moc (meta object compiler) to convert signals and

slots to complex C++ code.

Here's a path:

UI with designer

Subclass it

Program

uic

moc

Automated!
No need to
worry

How is it automated?

● Makefiles!

● Once you have your ui and class files in place, run
qmake -project

● This creates a .pro file, the project file.

● Then run
qmake

● This parses the project file and creates a Makefile
● Now, run make. And you are done!

Makefiles?

● In the good old days, installing an application was almost

always from the source code.

● You download the source code (source.tar.gz), unpack it,

(tar -xzf source.tar.gz), cd into it, (cd source).

● The source might have had a “configure” script that would

create a Makefile according to your system. (./configure)

● Without the configure, you may need to edit the Makefile

yourself (in very very few cases).

Makefiles? (2)

● Makefiles are used with the make utility

● make is a utility that automatically builds executable

programs and libraries from source code by reading files

called makefiles which specify how to derive the target

program (Thank you Wikipedia)

● With makefiles you define targets, source and header files,

and automate the build process. It is very useful if you have

many files.

● IDEs (like CodeBlocks) use make internally

Makefiles? (3)

● The next step installing is to compilation:
make

● If make does not give any errors during compilation, then

you have a working program. To install it system wide, run
make install

as super user. This will copy necessary files to system wide

locations.

Makefiles? (4)

● With Qt, you have nothing to worry about.

● Qt creates makefiles and you don't have to manually edit

them.

● Just type make, and the project will be compiled!

Sample App Code

#include <QMainWindow>

#include "ui_anapencere.h"

class anapencere:public QMainWindow, Ui::AnaPencere {

Q_OBJECT

public:

anapencere():QMainWindow() {

setupUi(this);

connect(addButton, SIGNAL(clicked()), this,

SLOT(add()));

}

public slots:

void add() {

listWidget->addItem(lineEdit->text());

lineEdit->clear();

}

};

