
FUNCTIONS

CHAPTER 5

 (PART 2)

prepared by Senem Kumova Metin

modified by İlker Korkmaz

A brief review on function invocation

and call-by-value concepts
 If a function is invoked from somewhere, the body of that function

will be executed at that moment.
 If an argument is passed to a function through the “call-by-value”

approach, the stored value in the caller environment will not be
changed.

example:
#include<stdio.h>
int my_sum(int n);

void main(void)
{ int n=9;
 printf(“%d\n” ,n);
 printf(“%d\n” ,my_sum(n)); // call (or invoke) “my_sum” function
 printf(“%d\n” ,n); // stored value of “n” of “main()” is not changed
}

int my_sum(int n)
{ n=n+2; // stored value of “n” of “my_sum()” is changed
 return n;
}

A brief review on developing large

programs

 If more than one source file is used within an
application, all source files can be compiled
seperately and their object files can be linked into
one executable file.

 Contents of an example program:

 source files: source1.c + source2.c

 header files: header1.h

 utiliy files: READ_ME

 to produce the executable file, program:

 gcc –o program source1.c source2.c

What about “TO DO” works?

 ??

 Have you done the previous “TO DO”
work, which was given within the last
lecture presentations?

 Implement an “isPrime” function.

Scope Rules (1)
 Each identifier is accessible only within the block that

it has been declared in.

 EXAMPLE:

 #include<stdio.h>

 void func_1(int a)
 { int b, c; …. }

 void func_2(int a, double b, float d)
 { char c; …. }

 void main ()
 { int a,b,d;
 char c; …. }

Scope Rules (2)
 An outer block name is valid unless an inner block redefines it. If

redefined, the outer block name is hidden from the inner block.

 EXAMPLE:

 {
 int a=2; float b=3.2; // the outer block’s “a” and “b”
 printf(“%d”,a);
 {
 int a =5; // the inner block’s “a”
 printf(“%d”,a);
 printf(“%f”,a+b);
 {
 int b=4; // the most inner block’s “b”
 printf(“%d”,a+b);
 }
 }
 printf(“%d”,++a); // the outer block’s “a”
 }

Storage Classes (1)
 Every variable and function in C has two attributes:

 type and storage class.

 The four storage classes are automatic, external, register, and static.
 auto

 Variables declared within function bodies are automatic by default.

 extern
 It is used to tell the compiler to look for it elsewhere either in this file or in some other

file.

 register
 It tells the compiler that the associated variables should be stored in high-speed

registers.

 static
 It allows a local variable to retain its previous value when the block is reentered.

EXAMPLES:
auto float f; // same with: float f;
extern int a;
register int i;
static int cnt=0;

Storage Classes (2)

extern
/* file1.c */

/* file1.c and file2.c are available
within the same project */

int f(void)

{

 extern int a;/* look for it elsewhere */

 int b, c;

 a = b = c = 4;

 return (a + b + c);

}

/* file2.c*/

/* file1.c and file2.c are available within the

same project */

#include <stdio.h>

int a = 1, b = 2, c = 3;

/* external variables */

int f(void);

int main(void)

{

 printf("%3d%3d%3d\n", a, b, c);

 printf("%3d\n", f());

 printf("%3d%3d%3d\n", a, b, c);

 return 0;

}

Storage Classes (3)

register : an attempt to improve execution time

EXAMPLES:

 register char c;

 register int a=1;

 /* IS EQUIVALENT TO */

 register a=1; // default type is int

Storage Classes (4)
static

 EXAMPLES:

#include<stdio.h>
int ver();

main()
{
 printf(“1. value=%d”, ver());
 printf(“2. value=%d”, ver());
 printf(“3. value=%d”, ver());
}

int ver()
{
 static int k;
 k=k+5;
 return k;
}

Recursion

 A function is said to be recursive if it calls itself,
either directly or indirectly.

 EXAMPLES:
int main(void)
{
 printf(“I am calling myself!\n”);
 main();
 return 0;
}

int sum(int n) // What does this function compute ??
{
 if(n<=1) return n;
 else return (n + sum(n-1));
}

RECURSION : FACTORIAL
/*iterative version*/
int factorial (int n)
{
 int product=1;

 for(;n>1;--n)
 product=product*n;

 return product;
}

/* recursive version */
int factorial(int n)
{
 if(n<=1)
 return 1;
 else
 return (n * factorial(n-1));
}

TO DO

 Three things to do in class:

 Define “fibonacci” function, and test it by
depicting the “function call stack”.

 Discuss the pros and cons of “recursion”
against to “iteration”.

 Illustrate how to create pseudorandom
numbers by calling “srand()” and “rand()”.

 A recursive problem to do at home:

 “Towers of Hanoi” example.

