
FUNCTIONS

CHAPTER 5

 (PART 2)

prepared by Senem Kumova Metin

modified by İlker Korkmaz

A brief review on function invocation

and call-by-value concepts
 If a function is invoked from somewhere, the body of that function

will be executed at that moment.
 If an argument is passed to a function through the “call-by-value”

approach, the stored value in the caller environment will not be
changed.

example:
#include<stdio.h>
int my_sum(int n);

void main(void)
{ int n=9;
 printf(“%d\n” ,n);
 printf(“%d\n” ,my_sum(n)); // call (or invoke) “my_sum” function
 printf(“%d\n” ,n); // stored value of “n” of “main()” is not changed
}

int my_sum(int n)
{ n=n+2; // stored value of “n” of “my_sum()” is changed
 return n;
}

A brief review on developing large

programs

 If more than one source file is used within an
application, all source files can be compiled
seperately and their object files can be linked into
one executable file.

 Contents of an example program:

 source files: source1.c + source2.c

 header files: header1.h

 utiliy files: READ_ME

 to produce the executable file, program:

 gcc –o program source1.c source2.c

What about “TO DO” works?

 ??

 Have you done the previous “TO DO”
work, which was given within the last
lecture presentations?

 Implement an “isPrime” function.

Scope Rules (1)
 Each identifier is accessible only within the block that

it has been declared in.

 EXAMPLE:

 #include<stdio.h>

 void func_1(int a)
 { int b, c; …. }

 void func_2(int a, double b, float d)
 { char c; …. }

 void main ()
 { int a,b,d;
 char c; …. }

Scope Rules (2)
 An outer block name is valid unless an inner block redefines it. If

redefined, the outer block name is hidden from the inner block.

 EXAMPLE:

 {
 int a=2; float b=3.2; // the outer block’s “a” and “b”
 printf(“%d”,a);
 {
 int a =5; // the inner block’s “a”
 printf(“%d”,a);
 printf(“%f”,a+b);
 {
 int b=4; // the most inner block’s “b”
 printf(“%d”,a+b);
 }
 }
 printf(“%d”,++a); // the outer block’s “a”
 }

Storage Classes (1)
 Every variable and function in C has two attributes:

 type and storage class.

 The four storage classes are automatic, external, register, and static.
 auto

 Variables declared within function bodies are automatic by default.

 extern
 It is used to tell the compiler to look for it elsewhere either in this file or in some other

file.

 register
 It tells the compiler that the associated variables should be stored in high-speed

registers.

 static
 It allows a local variable to retain its previous value when the block is reentered.

EXAMPLES:
auto float f; // same with: float f;
extern int a;
register int i;
static int cnt=0;

Storage Classes (2)

extern
/* file1.c */

/* file1.c and file2.c are available
within the same project */

int f(void)

{

 extern int a;/* look for it elsewhere */

 int b, c;

 a = b = c = 4;

 return (a + b + c);

}

/* file2.c*/

/* file1.c and file2.c are available within the

same project */

#include <stdio.h>

int a = 1, b = 2, c = 3;

/* external variables */

int f(void);

int main(void)

{

 printf("%3d%3d%3d\n", a, b, c);

 printf("%3d\n", f());

 printf("%3d%3d%3d\n", a, b, c);

 return 0;

}

Storage Classes (3)

register : an attempt to improve execution time

EXAMPLES:

 register char c;

 register int a=1;

 /* IS EQUIVALENT TO */

 register a=1; // default type is int

Storage Classes (4)
static

 EXAMPLES:

#include<stdio.h>
int ver();

main()
{
 printf(“1. value=%d”, ver());
 printf(“2. value=%d”, ver());
 printf(“3. value=%d”, ver());
}

int ver()
{
 static int k;
 k=k+5;
 return k;
}

Recursion

 A function is said to be recursive if it calls itself,
either directly or indirectly.

 EXAMPLES:
int main(void)
{
 printf(“I am calling myself!\n”);
 main();
 return 0;
}

int sum(int n) // What does this function compute ??
{
 if(n<=1) return n;
 else return (n + sum(n-1));
}

RECURSION : FACTORIAL
/*iterative version*/
int factorial (int n)
{
 int product=1;

 for(;n>1;--n)
 product=product*n;

 return product;
}

/* recursive version */
int factorial(int n)
{
 if(n<=1)
 return 1;
 else
 return (n * factorial(n-1));
}

TO DO

 Three things to do in class:

 Define “fibonacci” function, and test it by
depicting the “function call stack”.

 Discuss the pros and cons of “recursion”
against to “iteration”.

 Illustrate how to create pseudorandom
numbers by calling “srand()” and “rand()”.

 A recursive problem to do at home:

 “Towers of Hanoi” example.

