FUNCTIONS

CHAPTER 5
(PART 2)

prepared by Senem Kumova Metin
modified by Ilker Korkmaz

A brief review on function invocation
and call-by-value concepts

If a function is invoked from somewhere, the body of that function
will be executed at that moment.

If an ar%ument is passed to a function through the “call-by-value”

aﬁproac , the stored value in the caller environment will not be
changed.

#include<stdio.h>
int my_sum(int n);

void main(void)
{ intn=9;
printf('%d\n"” ,n);
printf("%d\n” ,my_sum(n)); // call (or invoke) "my_sum” function

A\ n

printf(*%d\n"” ,n); // stored value of "n” of "main()” is not changed

}

int my_sum(int n)
{ n=n+2; // stored value of "n” of "my_sum()"” is changed
return n;

}

A brief review on developing large
programs

If more than one source file is used within an
application, all source files can be compiled
seperately and their object files can be linked into
one executable file.

Contents of an example program:
source files: sourcel.c + source2.c
header files: headerl.h
utiliy files: READ_ME
—->to produce the executable file, program:
gcc —0 program sourcel.c source2.c

What about “TO DO” works?

27

Have you done the previous “TO DO”
work, which was given within the last
lecture presentations?

= Implement an “isPrime” function.

Scope Rules (1)

Each identifier is accessible only within the block that
it has been declared in.

#include<stdio.h>

void func_1(int a)
{ intb,c;.... }

void func_2(int a, double b, float d)
{ charg; }

void main ()
{ intab,d;
charc; }

Scope Rules (2)

An outer block name is valid unless an inner block redefines it. If
redefined, the outer block name is hidden from the inner block.

int a=2; float b=3.2; // the outer block’s "a” and "b"”
printf("%d"”,a);

{
inta =5; // the inner block’s “a”
printf(“%d"”,a);
printf("%f",a+b);
{
int b=4; // the most inner block’s “b"”
printf("%d"”,a+b);
}
s

printf("%d"”,++a); // the outer block’'s "a”

Storage Classes (1)

Every variable and function in C has two attributes:
= type and storage class.
The four storage classes are automatic, external, register, and static.

= auto
o Variables declared within function bodies are automatic by default.

m extern
O 1I‘tl is used to tell the compiler to look for it elsewhere either in this file or in some other
ile.

m register
o It tells the compiler that the associated variables should be stored in high-speed
registers.

m static
o It allows a local variable to retain its previous value when the block is reentered.

EXAMPLES:

auto float f; // same with: float f;
extern int a;

register int i;

static int cnt=0;

Storage Classes
cxtern

(2)

/* filel.c */

/* filel.c and file2.c are available
within the same project */

int f(void)

{
extern int a;/* look for it elsewhere */
int b, c;

a=b=c=4;
return (a + b + ¢);

/* file2.c*/

/ * filel.c and file2.c are available within the
same project */

#include <stdio.h>

int a=1, b=2, c¢c = 3;
/* external wvariables */

int f (void) ;

int main (void)

{
printf ("$3d%3d%3d\n", a, b, c);
printf ("$3d\n", £());
printf ("$3d%3d%3d\n", a, b, c);
return O;

Storage Classes (3)

I egiSter : an attempt to improve execution time

EXAMPLES:
register char c;

register int a=1;
/* IS EQUIVALENT TO */
register a=1,; // default type is int

Storage Classes 4)

static

#include<stdio.h>
int ver();

main()

{
printf(“1. value=%d"”, ver());
printf(“2. value=%d"”, ver());
printf(“3. value=%d"”, ver());

}

int ver()

{

static int k;
k=k+5;
return k;

}

Recursion

A function is said to be recursive if it calls itself,
either directly or indirectly.

int main(void)

{
printf("I am calling myselfI\n”);
main();
return O;
b
int sum(int n) // What does this function compute 77
{
if(h<=1) return n;
else return (n + sum(n-1));

RECURSION : FACTORIAL

/*iterative version*/
int factorial (int n)

{

int product=1;

for(;n>1;--n) /* recursive version */

product=product*n; int factorial(int n)
{

return product; if(n<=1)

> return 1;
else

return (n * factorial(n-1));

TO DO

Three things to do In class:

= Define “fibonacci” function, and test it by
depicting the “function call stack”.

m Discuss the pros and cons of “recursion”

against to “iteration”.

= [llustrate how to create pseudorandom

numbers by calling “sranc
A recursive problem to ¢

()" and “rand()".
o at home:

= "Towers of Hanoi” examp

€.

