

SE116 – LAB#7 2014-2015 SPRING

Aim: Run time polymorphism and the use of abstract base class.

Suppose that you are designing a payroll system for a company. You need to arrange

payments for the employees according to their working type. There are 2 different types of

employees; PieceWorker and HourlyWorker. A PieceWorker represents an

employee whose salary is based on a wage per product and the number of total products

produced. An HourlyWorker represents an employee whose salary is based on an hourly

wage and the number of total hours worked.

1. Define an abstract base class Employee with a pure virtual method

calculateEarnings(). This method will be defined later in concrete derived classes to

calculate earnings of the employees.

2. Derive a concrete class PieceWorker from Employee class. PieceWorker class

should contain an extra private data member: pieces to store the number of products

produced. (You are free in your design that the wage per a product of a PieceWorker

may either be an extra data member or a constant value. For example, the wage per a

product may be constant as 10 TL.)

3. Derive a concrete class HourlyWorker from Employee class. HourlyWorker class

should contain an extra private data member: hours to store the total hours worked.

(You are free in your design that the wage per an hour of a PieceWorker may either be

an extra data member or a constant value. For example, the hourly wage may be

constant as 12 TL.)

4. In class PieceWorker, provide a concrete implementation of method

calculateEarnings() that calculates the employee’s earnings by multiplying the

number of pieces produced by the wage per piece. In class HourlyWorker, provide a

concrete implementation of method calculateEarnings() that calculates the

employee’s earnings by multiplying the number of hours worked by the wage per

hour.

5. Finally, test your class hierarchy using polymorphism mechanism. (In main() function,

define base class pointers that will point derived class objects and call virtual method

calculateEarnings() through those base class pointers.)

