
C How to Program, 6/e

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

 The C++ standard libraries provide an extensive set of input/output
capabilities.

 C++ uses type-safe I/O.

 Each I/O operation is executed in a manner sensitive to the data type.

 If an I/O member function has been de-fined to handle a particular data
type, then that member function is called to handle that data type.

 If there is no match between the type of the actual data and a function
for handling that data type, the compiler generates an error.

 Thus, improper data cannot “sneak” through the system.

 Users can specify how to perform I/O for objects of user-defined types
by overloading the stream insertion operator (<<) and the stream
extraction operator (>>).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C++ I/O occurs in streams, which are sequences of bytes.

 In input operations, the bytes flow from a device (e.g., a keyboard, a
disk drive, a network connection, etc.) to main memory.

 In output operations, bytes flow from main memory to a device (e.g., a
display screen, a printer, a disk drive, a network connection, etc.).

 An application associates meaning with bytes.

 The system I/O mechanisms should transfer bytes from devices to
memory (and vice versa) consistently and reliably.

 Such transfers often involve some mechanical motion, such as the
rotation of a disk or a tape, or the typing of keystrokes at a keyboard.

 The time these transfers take is typically much greater than the time the
processor requires to manipulate data internally.

 Thus, I/O operations require careful planning and tuning to ensure
optimal performance.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C++ provides both “low-level” and “high-level” I/O capabilities.

 Low-level I/O capabilities (i.e., unformatted I/O) specify that
some number of bytes should be transferred device-to-memory or
memory-to-device.

 In such transfers, the individual byte is the item of interest.

 Such low-level capabilities provide high-speed, high-volume
transfers but are not particularly convenient.

 Programmers generally prefer a higher-level view of I/O (i.e.,
formatted I/O), in which bytes are grouped into meaningful units,
such as integers, floating-point numbers, characters, strings and
user-defined types.

 These type-oriented capabilities are satisfactory for most I/O
other than high-volume file processing.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 In the past, the C++ classic stream libraries enabled input
and output of chars.

 Because a char normally occupies one byte, it can
represent only a limited set of characters (such as those in
the ASCII character set).

 However, many languages use alphabets that contain more
characters than a single-byte char can represent.

 The ASCII character set does not provide these characters;
the Unicode® character set does.

 Unicode is an extensive international character set that
represents the majority of the world’s “commercially
viable” languages, mathematical symbols and much more.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C++ includes the standard stream libraries, which enable
developers to build systems capable of performing I/O
operations with Unicode characters.

 For this purpose, C++ includes an additional character type
called wchar_t, which can store 2-byte Unicode characters.

 The C++ standard also redesigned the classic C++ stream
classes, which processed only chars, as class templates
with separate specializations for processing characters of
types char and wchar_t, respectively.

 We use the char type of class templates throughout this
book.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The C++ iostream library provides hundreds of I/O
capabilities.

 Several header files contain portions of the library interface.

 Most C++ programs include the <iostream> header file,
which declares basic services required for all stream-I/O
operations.

 The <iostream> header file defines the cin, cout,
cerr and clog objects, which correspond to the standard
input stream, the standard output stream, the unbuffered
standard error stream and the buffered standard error
stream, respectively.

 Both unformatted- and formatted-I/O services are provided.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The <iomanip> header declares services useful for

performing formatted I/O with so-called parameterized

stream manipulators, such as setw and

setprecision.

 The <fstream> header declares services for user-

controlled file processing.

 C++ implementations generally contain other I/O-

related libraries that provide sys-tem-specific

capabilities, such as the controlling of special-purpose

devices for audio and video I/O.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The iostream library provides many templates for
handling common I/O operations.

 Class template basic_istream supports stream-input
operations, class template basic_ostream supports stream-
output operations, and class template basic_iostream
supports both stream-input and stream-output operations.
◦ Each template has a predefined template specialization that enables
char I/O.

◦ In addition, the iostream library provides a set of typedefs that
provide aliases for these template specializations.

◦ The typedef specifier declares synonyms (aliases) for previously
defined data types.

◦ Creating a name using typedef does not create a data type;
typedef creates only a type name that may be used in the program.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The typedef istream represents a specialization of

basic_istream that enables char input.

 The typedef ostream represents a specialization of

basic_ostream that enables char output.

 The typedef iostream represents a specialization of

basic_iostream that enables both char input and

output.

 We use these typedefs throughout this chapter.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Templates basic_istream and basic_ostream

both derive through single inheritance from base

template basic_ios.Template basic_iostream

derives through multiple inheritance from templates

basic_istream and basic_ostream.

 The UML class diagram of Fig. 23.1 summarizes these

inheritance relationships.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Predefined object cin is an istream instance and is

said to be “connected to” (or attached to) the standard

input device, which usually is the keyboard.

 The >> operator is overloaded to input data items of

fundamental types, strings and pointer values.

 The predefined object cout is an ostream instance

and is said to be “connected to” the standard out-put

device, which usually is the display screen.

 The << operator is overloaded to output data items of

fundamental types, strings and pointer values.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The predefined object cerr is an ostream instance and is said to be
“connected to” the standard error device, normally the screen.

 Outputs to object cerr are unbuffered, implying that each stream
insertion to cerr causes its output to appear immediately—this is
appropriate for notifying a user promptly about errors.

 The predefined object clog is an instance of the ostream class and
is said to be “connected to” the standard error device.

 Outputs to clog are buffered.

 This means that each insertion to clog could cause its output to be
held in a buffer until the buffer is filled or until the buffer is flushed.

 Buffering is an I/O performance-enhancement technique discussed in
operating-systems courses.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C++ file processing uses class templates basic_ifstream (for
file input), basic_ofstream (for file output) and
basic_fstream (for file input and output).

 Each class template has a predefined template specialization that
enables char I/O.

 C++ provides a set of typedefs that provide aliases for these
template specializations.

 The typedef ifstream represents a specialization of
basic_ifstream that enables char input from a file.

 The typedef ofstream represents a specialization of
basic_ofstream that enables char output to a file.

 The typedef fstream represents a specialization of
basic_fstream that enables char input from, and output to,
a file.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Template basic_ifstream inherits from
basic_istream, basic_ofstream inherits from
basic_ostream and basic_fstream inherits
from basic_iostream.

 The UML class diagram of Fig. 23.2 summarizes the
various inheritance relationships of the I/O-related
classes.

 The full stream-I/O class hierarchy provides most of
the capabilities that you need.

 Consult the class-library reference for your C++ system
for additional file-processing information.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Formatted and unformatted output capabilities are

provided by ostream.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The << operator has been overloaded to output a

char * as a null-terminated string.

 To output the address, you can cast the char * to a

void * (this can be done to any pointer variable).

 Figure 23.3 demonstrates printing a char * variable in

both string and address formats.

 The address prints as a hexadecimal (base-16) number,

which might differ among computers.

 To learn more about hexadecimal numbers, read

Appendix D.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 We can use the put member function to output characters.

 For example, the statement
 cout.put('A');

 displays a single character A.

 Calls to put may be cascaded, as in the statement
 cout.put('A').put('\n');

 which outputs the letter A followed by a newline character.

 As with <<, the preceding statement executes in this manner, because
the dot operator (.) associates from left to right, and the put member
function returns a reference to the ostream object (cout) that
received the put call.

 The put function also may be called with a numeric expression that
represents an ASCII value, as in the following statement

 cout.put(65);

 which also out-puts A.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Formatted and unformatted input capabilities are provided by istream.

 The stream extraction operator (>>) normally skips white-space characters
(such as blanks, tabs and newlines) in the input stream; later we’ll see how to
change this behavior.

 After each input, the stream extraction operator returns a reference to the
stream object that received the extraction message (e.g., cin in the expression
cin >> grade).

 If that reference is used as a condition, the stream’s overloaded void * cast
operator function is implicitly invoked to convert the reference into a non-null
pointer value or the null pointer based on the success or failure of the last input
operation.
◦ A non-null pointer converts to the bool value true to indicate success and the null

pointer converts to the bool value false to indicate failure.

 When an attempt is made to read past the end of a stream, the stream’s
overloaded void * cast operator returns the null pointer to indicate end-of-
file.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Each stream object contains a set of state bits used to

control the stream’s state (i.e., formatting, setting error

states, etc.).

 These bits are used by the stream’s overloaded void *

cast operator to determine whether to return a non-null

pointer or the null pointer.

 Stream extraction causes the stream’s failbit to be set

if data of the wrong type is input and causes the

stream’s badbit to be set if the operation fails.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The get member function with no arguments inputs one character from
the desig-nated stream (including white-space characters and other
nongraphic characters, such as the key sequence that represents end-of-
file) and returns it as the value of the function call.

 This version of get returns EOF when end-of-file is encoun-tered on
the stream.

 Figure 23.4 demonstrates the use of member functions eof and get
on input stream cin and member function put on output stream
cout.

 The user enters a line of text and presses Enter followed by end-of-file
(<Ctrl>-z on Microsoft Windows systems, <Ctrl>-d on UNIX and
Macintosh systems).

 This program uses the version of istream member function get that
takes no arguments and returns the character being input (line 15).

 Function eof returns true only after the program attempts to read
past the last character in the stream.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The get member function with a character-reference argument inputs
the next character from the input stream (even if this is a white-space
character) and stores it in the character ar-gument.

 This version of get returns a reference to the istream object for
which the get member function is being invoked.

 A third version of get takes three arguments—a character array, a size
limit and a delimiter (with default value '\n').

 This version reads characters from the input stream.

 It either reads one fewer than the specified maximum number of
characters and terminates or terminates as soon as the delimiter is read.

 A null character is inserted to terminate the input string in the character
array used as a buffer by the pro-gram.

 The delimiter is not placed in the character array but does remain in the
input stream (the delimiter will be the next character read).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Figure 23.5 compares input using stream extraction

with cin (which reads characters until a white-space

character is encountered) and input using cin.get.

 The call to cin.get (line 22) does not specify a

delimiter, so the default '\n' character is used.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Member function getline operates similarly to the

third version of the get member function and inserts a

null character after the line in the character array.

 The getline function removes the delimiter from the

stream (i.e., reads the character and discards it), but

does not store it in the character ar-ray.

 The program of Fig. 23.6 demonstrates the use of the

getline member function to input a line of text (line

13).

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The ignore member function of istream reads and discards a
designated number of characters (the default is one) or terminates
upon encountering a designated delimiter (the default is EOF,
which causes ignore to skip to the end of the file when reading
from a file).

 The putback member function places the previous character
obtained by a get from an input stream back into that stream.
◦ This function is useful for applications that scan an input stream looking

for a field beginning with a specific character.

◦ When that character is input, the application returns the character to the
stream, so the character can be included in the input data.

 The peek member function returns the next character from an
input stream but does not remove the character from the stream.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C++ offers type-safe I/O.

 The << and >> operators are overloaded to accept data
items of specific types.

 If unexpected data is processed, various error bits are
set, which the user may test to determine whether an
I/O operation succeeded or failed.

 If operator << has not been overloaded for a user-
defined type and you attempt to input into or output the
contents of an object of that user-defined type, the
compiler reports an error.

 This enables the program to “stay in control.”

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Unformatted input/output is performed using the read and write
member functions of istream and ostream, respectively.

 Member function read inputs bytes to a character array in memory;
member function write outputs bytes from a character array.

 These bytes are not formatted in any way.

 They’re input or output as raw bytes.

 The read member function inputs a designated number of characters
into a character array.

 If fewer than the designated number of characters are read, failbit
is set.

 Section 23.8 shows how to determine whether failbit has been set.

 Member function gcount reports the number of characters read by the
last input operation.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Figure 23.7 demonstrates istream member functions

read and gcount, and ostream member function

write.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 C++ provides various stream manipulators that perform

formatting tasks.

 The stream manipulators provide capabilities such as

setting field widths, setting precision, setting and

unsetting format state, setting the fill character in fields,

flushing streams, inserting a newline into the output

stream (and flushing the stream), inserting a null

character into the output stream and skipping white

space in the input stream.

 These features are described in the following sections.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Integers are interpreted normally as decimal (base-10) values.

 To change the base in which integers are interpreted on a stream, insert
the hex manipulator to set the base to hexadecimal (base 16) or insert
the oct manipulator to set the base to octal (base 8).

 Insert the dec manipulator to reset the stream base to decimal.

 These are all sticky manipulators.

 The base of a stream also may be changed by the setbase stream
manipulator, which takes one integer argument of 10, 8, or 16 to set
the base to decimal, octal or hexadecimal, respectively.

 Because setbase takes an argument, it’s called a parameterized
stream manipulator.

 Figure 23.8 demonstrates stream manipulators hex, oct, dec and
setbase.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 We can control the precision of floating-point numbers (i.e., the
number of digits to the right of the decimal point) by using either
the setprecision stream manipulator or the precision
member function of ios_base.

 A call to either of these sets the precision for all subse-quent
output operations until the next precision-setting call.

 A call to member function precision with no argument
returns the current precision setting (this is what you need to use
so that you can restore the original precision eventually after a
“sticky” setting is no longer needed).

 The program of Fig. 23.9 uses both member function
precision (line 22) and the setprecision manipula-tor
(line 31) to print a table that shows the square root of 2, with
precision varying from 0 to 9.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 The width member function (of base class ios_base) sets the field width
(i.e., the number of character positions in which a value should be output or the
maximum number of characters that should be input) and returns the previous
width.

 If values output are narrower than the field width, fill characters are inserted as
padding.

 A value wider than the designated width will not be truncated—the full number
will be printed.

 The width function with no argument returns the current setting.

 Figure 23.10 demonstrates the use of the width member function on both
input and output.

 On input into a char array, a maximum of one fewer characters than the width
will be read.

 Remem-ber that stream extraction terminates when nonleading white space is
encountered.

 The setw stream manipulator also may be used to set the field width.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 A basic introduction to FILE I/O in C++ is
available at
http://www.cplusplus.com/doc/tutorial/files

http://www.cplusplus.com/doc/tutorial/files

