Chapters 17-18

Classes: A Deeper Look,
Parts | & |l

C How to Program, 6/e, 7 /e

prepared by SENEM KUMOVA METIN
modified by UFUK CELIKKAN and ILKER KORKMAZ

The textbook’s contents are also used

©1992-2010 by Pearson Education, Inc. All
Rights Reserved.

References and Reference Parameters

- Two ways to pass arguments to functions in many
programming languages are pass-by-value and pass-
by-reference.

- When an argument is passed by value, a copy of the
argument’s value 1s made and passed (on the function
call stack) to the called function. Changes to the copy
do not affect the original variable’s value in the caller.

- With pass-by-reference, the caller gives the called
function the ability to access the caller’s data directly,
and to modify that data if the called function chooses

to do so.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

<>

What is a Reference

- Reference Is signaled by & and provides an alternative
name for storage

int Xy X ... pref
int & ref = x;
x = 3; 3

ref = 3;

CS116 SENEM KUMOVA METIN 3

b
Call by Reference : SWAP example

#include <iostream>
using namespace std;

void swap (int &, int &);

void main () {
int i=7 ; int j=-3;
swap (i,3]);
cout << i <<endl;
cout << j << endl;

}

void swap (int & a, int & b) {
int t = a;
a = b;
b =t;

CS116 SENEM KUMOVA METIN 4

RETURN BY VALUE

int vall () {
int 1=8;

return i;

}

main () {
int t;
t = vall();

} temporary
storage

a1— 5 — &

<>

Returning References

» Returning references from functions can be dangerous.

» When returning a reference to a variable declared in the
called function, the variable should be declared
stat1c within that function.

» Otherwise, the reference refers to an automatic variable
that 1s discarded when the function terminates; such a
variable 1s “undefined,” and the program’s behavior 1s
unpredictable.

» References to undefined variables are called dangling
references.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

RETURN BY REFERENCE 28

int & vall() {

int i=8: NO TEMPORARY STORAGE
N . IS USED Il
} return 1. t IS NOW i
main () { t i

int t;
t = vall(); . .

}

DANGER: vall returns a reference to a value that is going to go out of scope

when the function returns. The caller receives a reference to garbage. Fortunately,
your compiler will give you an error if you try to do this.

D:vhomeswoelikk . o o In functiocn "int&s wvallil) ":

D-\homs\celikk . 13 varning: refersesnce to local wvarisble '1' returned

CS116 SENEM KUMOVA METIN 7

References : Aliases

» References can also be used as aliases for other
variables. Once a reference is declared as an alias for a
variable, all operations “performed” on the alias (1.e.,
the reference) are actually performed on the original
variable.

» The alias Is simply another name for the original
variable.

» For example, the code

- int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count
crRef++; // increment count (using its alias cRef)

increments variable count by using its alias cRef.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Passing and Returning Objects by Value <&

class Person {

public
void setAge (unsigned n) { main() {
age = n; Person x;
}; cout << x.getAge() << endl;
unsigned getAge () const ({ x = funcl();
return age; // cout << funcl () .getAge(); ?
}; cout << x.getAge() << endl;
private: cout << func2(x) << endl;
unsigned age; cout << x.getAge() << endl;

}; }

Person funcl() {
Person p;
p.setAge(4) ;
return p; // Returning object

}

unsigned func2(Person y) { // Call by value
y.setAge (3) ;
return y.getAge() ;

CS116 SENEM KUMOVA METIN 9

Passing and Returning Objects by Value <&

class Person {

public :
void setAge (unsigned n) { main() {
age = n; Person x;
}; cout << x.getAge() << endl;
unsigned getAge () const ({ x = funcl();
return age; // cout << funcl () .getAge(); ?
}; cout << x.getAge() << endl;
private: cout << func2(x) << endl;
unsigned age; cout << x.getAge() << endl;

}; }

Person funcl() {

Person p;

p.setAge(4) ;

return p; // Returning object 4203996
} 4
unsigned func2(Person y) { // Call by value 3

y.setAge (3) ; 4‘

return y.getAge() ;

CS116 SENEM KUMOVA METIN 10

Passing and Returning Objects by Referefics

class Person {

public
void setAge (unsigned n) { main() {
age = n; Person x;
}; cout << x.getAge() << endl;
unsigned getAge () const ({ x = func3();
return age; cout << x.getAge() << endl;
}; cout << func4 (x) << endl;
private: cout << x.getAge() << endl;
unsigned age; }

};

Person & func3() {
Person p;
p.setAge(4) ;
return p;

}

unsigned func4(Person & y){ // Call by reference
y.setAge (3) ;
return y.getAge() ;

CS116 SENEM KUMOVA METIN 11

Passing and Returning Objects by Referefics

class Person {

public
void setAge (unsigned n) { main() {
age = n; Person x;
}; cout << x.getAge() << endl;
unsigned getAge () const ({ x = func3();
return age; cout << x.getAge() << endl;
}; cout << func4 (x) << endl;
private: cout << x.getAge() << endl;
unsigned age; }

};

Person & func3() {
Person p;
p.setAge(4) ;
return p;

}

unsigned func4(Person & y){ // Call by refétrg
y.setAge (3) ;
return y.getAge() ;

CS116 SENEM KUMOVA METIN 12

<

Pointer to Objects

Accessing to an object’s members through a pointer requires class indirection operator
‘C_>’9

class Person {

P?:i;; setAge (unsigned n) { void main() {
Person x;
. age = ny x.setAge (4) ;
b _ cout << x.getAge ()<< endl;
unsigned getAge () const ({
return age; func (8x) ;
bi cout << x.getAge() << endl;

private:
unsigned age;

};

void func (Person * ptr) {
ptr->setAge (5) ;
cout << ptr->getAge() << endl;

}

CS116 SENEM KUMOVA METIN 13

bl

const methods

const objects and const member functions
prevent modifications of objects and enforce the principle of least privilege.

class Time {

public:
void setTime(int h, int m) {hour = h; minute = m;}; // OK.
void printUniversal() const {hour = 12; }; //?2?2?2?2°?2?
void printStandard() const;

private:
int hour;
int minute;

};

The keyword const in methods printUniversal and printStandard shows that
unlike method SetTime, these methods can not change the value of any Time
data member,

CS116 SENEM KUMOVA METIN 14

const keyword in input and output <>
parameter

class Time {
public:
void setTime(const int &m, const int &h) { minute=m; hour=h;};
const int & getHour() { return hour;};
private:
int hour;
int minute;

};

main () {
int a = 16, b = 15;
const int &x = 0; // Intialization is OK !

Time obj;

// setTime () cannot change the value of a or b of main()
obj.setTime(a, b) ;

// main() cannot change the return value of getHour ()

x = obj.getHour() ;

Dovhomeswoelikk. . . In function "int maini) ':

D-Yhomeycelikk. .. 157 error: assignment of read-only reference "x'

CS116 SENEM KUMOVA METIN 15

Initializing Objects with ——

Constructors

» A special method that initializes class members.
» Same name as the class.
» No return type (not even void).

» Member variables can be initialized by the constructor
or set afterwards

» Normally, constructors are declared publ1ic.

CS116 SENEM KUMOVA METIN 16

Initializing Objects with
Constructors (cont.)

» C++ requires a constructor call for each object that Is
created, which helps ensure that each object Is
initialized before 1t’s used 1n a program.

» The constructor call occurs implicitly when the object
IS created.

» If a class does not explicitly include a constructor, the
compliler provides a default constructor—that is, a
constructor with no parameters .

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Initializing Objects with
Constructors (cont.)

» A class gets a default constructor in one of two ways:

> The compiler implicitly creates a default constructor in a
class that does not define a constructor.

> You explicitly define a constructor that takes no arguments.

» If you define a constructor with arguments, C++ will
not implicitly create a default constructor for that class.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Constructors : inline definition

class Person {
public
// Constructor
Person() { age = 0; name =“Unknown”; }

void setAge (unsigned n) { age = n };
unsigned getAge() const { return age };
void getName () const { cout <<name<<endl; }

private:
unsigned age;
string name;

};

void main ()

{
Person p;
cout << p.getAge()<<endl;
cout << p.getName ()<<endl;

}

CS116 SENEM KUMOVA METIN

<>

19

Constructors

class Person {

public
Person () ; // Constructor
void setAge (unsigned n) { age =n };
unsigned getAge() const { return age };
void getName () const { cout << name << endl;

private:
unsigned age;
string name;

};

Person ::Person() {
age = 0;
name = “Unknown”;

void main ()

{

Person p;
cout <<p.getAge()<<endl;
cout <<p.getName ()<<endl;

\ CS116 SENEM KUMOVA METIN

}

<>

20

Constructors : Overloading <P

class Person {

public
Person() { age = 0; name = “Unknown”; } // First Constructor
Person(string n) { name = n; } // Second Constructor

void setAge (unsigned n) { age = n };
unsigned getAge () const { return age };
void getName () const { cout <<name<<endl; }

private:
unsigned age;
string name;

};

void main ()

{
Person q; // USING FIRST CONSTRUCTOR
cout << g.getAge() << endl;
cout << g.getName ()<< endl

Person p(“John”); // USING SECOND CONSTRUCTOR
cout << p.getAge() << endl;
cout << p.getName ()<< endl;

CS116 SENEM KUMOVA METIN 21

Destructors —

» A constructor Is automatically invoked whenever an object is
created

» A destructor iIs automatically invoked whenever an object is
destroyed

» A destructor takes no arguments and no return type, there can
be only one destructor per class

class C
{
public :
C() { ... }; // constructor
~C() { .. }: // destructor

CS116 SENEM KUMOVA METIN 22

Destructor: Example Sk

class C {
public

C() {name="anonymous” ;}

C(const char * n) { name=n;}

~C() { cout <<“destructing” <<name<<“\n”;}
private:

string name;

};

int main () {
C cO0(“John”) ;
{ // entering scope....
C cl;
C c2;
} // exiting scope. destructors for cl and c2 are called

C * ptr = new C();
delete ptr; // destructor for ptr object is called

return 0; // destructor for c0 is called

CS116 SENEM KUMOVA METIN 23

CONSTRUCTORS

class Person {
public
Person() {name =“Unknown”; };
Person(cons string & n) ;
Person(cons char * n);
void getName () const { cout << name; }
private:
string name;

}s;

Person :: Person(const string & n) ({
name = n;
cout <<“Creating objects with string!!'\n”;

Person :: Person(const char * n) {
name = n;
cout <<“Creating objects with char *!!\n”;

void main () {
Person p;
p.getName () ;
Person pl (“NOT IMPORTANT”); // char * string sl (“VERY IMPORTANT”)

Person p2(sl);

CS116 SENEM KUMOVA METIN

<>

24

CONSTRUCTORS : <>

Restricting Object Creation

class Emp {

public :
Emp (unsigned ID) { id=ID;}
unsigned id;

private:
Emp () ;

};

void main() {
Emp orhan; //IS IT POSSIBLE??

Emp ferdi(111222333); //IS IT POSSIBLE??
}

If a class explicitly declares any constructor, the compiler does not provide a public
default constructor.

If a class declares a Non-public default constructor, compiler does not provide a
public default constructor.

CS116 SENEM KUMOVA METIN

25

CONSTRUCTORS : b
Restricting Object Creation

class Emp {

public :
Emp (unsigned ID) { id=ID;}
unsigned id;

private:
Emp () ;

}i

void main() {

Emp orhan; //IS IT POSSIBLE?? NO

Emp ferdi (111222333); //IS IT POSSIBLE?? YES
}
D-vhome\celikk. . . In function 'int main() ':
D-vhomeh\celikk. .. ©B error: "Emp::Emp()"' i3 private
D:Mhome\celikk. .. 125 error: within this context

CS116 SENEM KUMOVA METIN 26

Default Memberwise Assignment

» The assignment operator (=) can be used to assign an object
to another object of the same type.

» By default, such assignment is performed by memberwise
assignment

- Each data member of the object on the right of the assignment
operator is assigned individually to the same data member in the
object on the left of the assignment operator.

» [Caution: Memberwise assignment can cause serious
problems when used with a class whose data members
contain pointers to dynamically allocated memory]

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

<

Default Memberwise Assignment (cont.)

» Objects may be passed as function arguments and may be
returned from functions.

» Such passing and returning is performed using pass-by-
value by default—a copy of the object is passed or returned.
o C++ creates a new object and uses a copy constructor to copy the

original object’s values into the new object.

» For each class, the compiler provides a default copy
constructor that copies each member of the original object
Into the corresponding member of the new object.

> Copy constructors can cause serious problems when used with a
class whose data members contain pointers to dynamically allocated

memory.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

CONSTRUCTORS : Copy Constructor <P

= A copy constructor creates a new object as a copy to another object
= Copy constructor for Person class > Person (Person &) ;

class Person {

public :
Person (const string & , const unsigned)
string name;
unsigned age;

};

Person :: Person(const string & n, const unsigned a) ({
cout << " Calling constructor with "<< n << "," << a << endl;
name=n;
age=a;

}

main () {

string sl ("Bob") ;
Person pl(sl,15);
Person p2(pl); // which constructor works?????

cout << p2.name;

CS116 SENEM KUMOVA METIN 29

CONSTRUCTORS : Copy Constructor <P

Copy constructor may have more than one parameter but all
parameters beyond the first must have default values.

class Person {
public :
Person(const string & , const unsigned) { name=n; age=a;}
Person (Person & x, const unsigned) ;
string name;
unsigned age;

};

Person :: Person(Person & x, const unsigned y = 0) {
cout << "Calling Copy Constructor" << y ;
name=x.name; age=y;

}

main () {
string sl ("Bob") ;
Person pl(sl,15);

CS116 SENEM KUMOVA METIN 30

Constructor: Convert b

Used to convert a non-C type such as an int or stringtoa C
object

class Person {

public :
Person() {name =“Unknown”; }
Person (const string & n) { name = n;}
Person (const char * n) { name = n; } // called
private:

string name;

};

void main () {
Person pl (“John”) ;
// converts a string constant to a Person object

CS116 SENEM KUMOVA METIN 31

CONSTRUCTORS : Disabling Passing @&
and Returning by Value for Class Objects

class C {

public : C();
private: C(C &); // Copy Constructor
};
void £(C) ; // call by value
Cg() {
C obj;

return obj; // return by value

}

main () {
Ccl, c2;
f(cl); // NOT POSSIBLE
c2=g () ; // NOT POSSIBLE

}

If the copy constructor is private top-level functions and methods In
other classes cannot pass or return class objects by value because
this requires a call to copy constructor!!!

\ UD1 10 DENEIVI KUIVIUVA IVIET TN

CONSTRUCTOR INITIALIZERS <>

class
C {
public
C() { x=0; y=0;} // cannot change the value of const y
private:
int x;
const int y; // const data member

};

// WE HAVE TO USE CONSTRUCTOR INITIALIZER to INITIALIZE A
// const DATA MEMBER!!!

class C {

public
C() : y(0) { x=0; } // oxr C() : y(0), x(0){ }

private:
int x;
const int y; // const data member

};

CS116 SENEM KUMOVA METIN 33

CONSTRUCTORS : new and new [] <>
operators

class Emp ({
public
Emp () {cout << '"calling default constructor";};
Emp (const char * name) {n = name;}
string n;
};
int main|()
{
int *x = new int;
// default constructor initializes

Emp *orhan new Emp () ;
// second constructor initializes
new Emp (“Ferdi”) ;
// default constructor initializes
Emp *lots of people = new Emp[1000];
// NO constructor initializes
Emp *foo = (Employee *) malloc(sizeof (Emp)) ;

Emp *ferdi

CS116 SENEM KUMOVA METIN 34

The order of the ctor and dtor calls

® Destructor calls are made in the reverse order of
constructor calls for the corresponding objects

® Scope or storage class differences of the objects
can alter the order

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

static Class Members

» In certain cases, only one copy of a variable should be
shared by all objects of a class.

» A static data member 1s used for these and other
reasons. static keyword is used.

» Such a variable represents “class-wide” information.

class C {
int x;
static int s;

};

Ccl, c2, c3;

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Static members : Data members <&

» A static member does not effect the size of a class or an object
of this class type.

» A static data member may be declared inside a class
declaration but must be defined outside.

» A class’s static members exist even when no objects of that
class exist.

class Task {

public:
private:
static unsigned n; // declaration
static const int id = 0; // const is required if

initialized
};

unsigned Task::n=0; // definition

CS116 SENEM KUMOVA METIN 37

static Class Members (cont.)

» Although they may seem like global variables, a class’s static data
members have class scope.

» static members can be declared public, private or
protected.

b é\fundamental—type static data member is initialized by default to

» If you want a different initial value, a static data member can be
Initialized once.

» Astatic const data member of 1nt or enum type can be
Initialized in its declaration in the class definition.

» All other static data members must be defined at global namespace
scope and can be initialized only in those definitions.

» Ifa stat1ic data member is an object of a class that provides a default
constructor, the static data member need not be initialized because
its default constructor will be called.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

Static members : Methods <&

A static method can access only other static members

class Task({
public:

static unsigned getN() {return n;}

static int getK() const {return k;} //NOT POSSIBLE!!!
private:

static unsigned n;
int k;

CS116 SENEM KUMOVA METIN 39

<>
Public static members : Accessing

To access a pub11c stat1c class member when no objects of the
class exist, prefix the class name and the binary scope resolution
operator (: :) to the name of the data member.

CS116 SENEM KUMOVA METIN 40

Public static data members : Acc:essingB

class Task {

public:
static unsigned getN() const {return n;}
static unsigned n;

};

unsigned Task: :n=5;

int main() {
Task cl, c2;

cl.getN() ; // access through an object. cl exists.
Task: :getN() ; // access through class (direct access)

unsigned x cl.n; // access through an object
unsigned y = c2.n; // access through an object

unsigned z= Task::n; // access through class(direct access)

CS116 SENEM KUMOVA METIN 41

Private static data members : ACCQSSiI%E

To access a private or protected static class member when no
objects of the class exist, provide a public static member function

and call the function by prefixing its name with the class name and
binary scope resolution operator.

class Task {
public:

static unsigned getN() const {return n;}
private:

static unsigned n;

};

unsigned Task: :n=5;

int main() {
unsigned z= Task::n; // ERROR !!! n is private

// access through class (direct access
unsigned z = Task::getN() ;

CS116 SENEM KUMOVA METIN 42

<>
Static vars defined inside methods

class C {
public : wvoid m();
private : int x;

};

void C::m() {
static int s = 0; // one copy for all objects!!
cout << ++s << ‘\n’

}

int main|() {
C cl,c2,c3;

cl.m(); // 1
c2.m(); // 2
c3.m(); // 3
return O;

CS116 SENEM KUMOVA METIN 43

sizeof an object

» People new to object-oriented programming often
suppose that objects must be quite large because they
contain data members and member functions.

» Logically, this Is true—you may think of objects as
containing data and functions (and our discussion has
certainly encouraged this view); physically, however,
this Is not true.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

sizeof an object

= Performance Tip 17.2

Objects contain only data, so objects are much smaller
than if they also contained member functions. Applying
operator sizeof to a class name or to an object of that
class will report only the size of the class’s data members.
The compiler creates one copy (only) of the member func-
tions separate from all objects of the class. All objects of
the class share this one copy. Each object, of course, needs
its own copy of the class’s data, because the data can vary
among the objects. The function code is nonmodifiable
and, hence, can be shared among all objects of one class.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

The Pointer Constant this

th1is pointer class C {
* an implicit argument to each of a class’s public
non-static member functions. C() {x =20}
» allows those member functions to access Prlvatfa :t .
the correct object’s data members and . ot x;
other non-static member functions. b
IS SAME WITH

class C {
public

C() {this->x
private:

int x;

};

CS116 SENEM KUMOVA METIN

<>

0;}

46

The Pointer Constant this

class Person {
public
Person(string & name) {

this->name = name; // name = name does NOT
work

<>

name="Mary”; // name is input parameter

}

string getName () { return name;}
private:

string name; // = this->name
};
void main () {

string n(“Joe”) ;

Person p(n);

cout << n <K V" " << p.getName() ;

CS116 SENEM KUMOVA METIN

47

Utility functions

® Member functions with private access specifier

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Composition
® The use of “has-a relationship”

@ Classes can have objects of other classes as data members

class DifferentClass{

/] ...
3

class ExampleClass{
DifferentClass exampleDataMember;

b

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

friend Functions and friend Classes

» A friend function of a class is defined outside that
class’s scope, yet has the right to access the non-
pub11ic (and pub11c) members of the class.

» Standalone functions, entire classes or member
functions of other classes may be declared to be friends
of another class.

» Using friend functions can enhance performance.
» Friendship is granted, not taken.

» The friendship relation Is neither symmetric nor
transitive.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

I // Fig. 18.15: figl8_15.cpp

2 // Friends can access private members of a class.
3 #include <iostream>

4 using namespace std;

5

6 // Count class definition

7 class Count

8 {

9 friend void setX(Count &, int); // friend declaration
10 public:

11 // constructor

12 Count()

13 : xC0) // initialize x to 0
14 {

I5 // empty body

16 } // end constructor Count

17

18 // output x

19 void print() const
20 {
21 cout << x << endl;
22 } // end function print

Fig. 18.15 | Friends can access private members of a class. (Part | of 3.)

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

23 private:

24 int x; // data member
25 }; // end class Count
26

27 // function setX can modify private data of Count
28 // because setX is declared as a friend of Count (line 9)
29 void setX(Count &c, 1int val)

30 {

31 c.Xx = val; // allowed because setX is a friend of Count
32 } // end function setX

33

34 1int main(Q)

35 {

36 Count counter; // create Count object

37

38 cout << "counter.x after instantiation: ";

39 counter.print();

40

41 setX(counter, 8); // set x using a friend function

42 cout << "counter.x after call to setX friend function: ";
43 counter.print();

44 } // end main

Fig. 18.15 | Friends can access private members of a class. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

counter.x after instantiation: O
counter.x after call to setX friend function: 8

Fig. 18.15 | Friends can access private members of a class. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

HW & LAB

® HWs are not assessed. Nevertheless, LAB works may be
similar to HWs. Therefore, you are advised to do HWs.

® LABs are not graded. However, midterm questions may be
similar to LABs. So, you are advised to attend in LAB classes.

TO DO @ HOME:
® Dissect the example codes provided in Chapters 17 and 18.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

