
C How to Program, 6/e, 7/e

©1992-2010 by Pearson Education, Inc. All
Rights Reserved.

prepared by SENEM KUMOVA METİN
modified by UFUK ÇELİKKAN and ILKER KORKMAZ

The textbook’s contents are also used

 Two ways to pass arguments to functions in many
programming languages are pass-by-value and pass-
by-reference.

 When an argument is passed by value, a copy of the
argument’s value is made and passed (on the function
call stack) to the called function. Changes to the copy
do not affect the original variable’s value in the caller.

 With pass-by-reference, the caller gives the called
function the ability to access the caller’s data directly,
and to modify that data if the called function chooses
to do so.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

CS116 SENEM KUMOVA METİN 3

 Reference is signaled by & and provides an alternative
name for storage

 int x;

 int & ref = x;

 x = 3;

 ref = 3;

x … ref

3

CS116 SENEM KUMOVA METİN 4

#include <iostream>

using namespace std;

void swap (int &, int &);

void main(){

 int i=7 ; int j=-3;

 swap (i,j);

 cout << i <<endl;

 cout << j << endl;

}

void swap (int & a, int & b) {

 int t = a;

 a = b;

 b = t;

}

CS116 SENEM KUMOVA METİN 5

int val1() {

 int i=8;

 …

 return i;

}

main(){

 int t;

 t = val1();

 …

}

8 8 8

i

Copy to Copy to

temporary

storage t

 Returning references from functions can be dangerous.

 When returning a reference to a variable declared in the

called function, the variable should be declared

static within that function.

 Otherwise, the reference refers to an automatic variable

that is discarded when the function terminates; such a

variable is “undefined,” and the program’s behavior is

unpredictable.

 References to undefined variables are called dangling

references.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

CS116 SENEM KUMOVA METİN 7

int & val1() {

 int i=8;

 return i;

}

main(){

 int t;

 t = val1();

 …

}

8

i t

NO TEMPORARY STORAGE

IS USED !!!

t IS NOW i

DANGER: val1 returns a reference to a value that is going to go out of scope

when the function returns. The caller receives a reference to garbage. Fortunately,

your compiler will give you an error if you try to do this.

 References can also be used as aliases for other

variables. Once a reference is declared as an alias for a

variable, all operations “performed” on the alias (i.e.,

the reference) are actually performed on the original

variable.

 The alias is simply another name for the original

variable.

 For example, the code
 int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count
cRef++; // increment count (using its alias cRef)

 increments variable count by using its alias cRef.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

CS116 SENEM KUMOVA METİN 9

class Person {

public :

 void setAge (unsigned n) {

 age = n;

 };

 unsigned getAge() const {

 return age;

 };

private:

 unsigned age;

};

Person func1() {

 Person p;

 p.setAge(4);

 return p; // Returning object

}

unsigned func2(Person y) { // Call by value

 y.setAge(3);

 return y.getAge();

 }

OUTPUT
???

main() {

 Person x;

 cout << x.getAge() << endl;

 x = func1();

 // cout << func1().getAge(); ?

 cout << x.getAge() << endl;

 cout << func2(x) << endl;

 cout << x.getAge() << endl;

}

CS116 SENEM KUMOVA METİN 10

class Person {

public :

 void setAge (unsigned n) {

 age = n;

 };

 unsigned getAge() const {

 return age;

 };

private:

 unsigned age;

};

Person func1() {

 Person p;

 p.setAge(4);

 return p; // Returning object

}

unsigned func2(Person y) { // Call by value

 y.setAge(3);

 return y.getAge();

 }

4203996

4
3
4

main() {

 Person x;

 cout << x.getAge() << endl;

 x = func1();

 // cout << func1().getAge(); ?

 cout << x.getAge() << endl;

 cout << func2(x) << endl;

 cout << x.getAge() << endl;

}

CS116 SENEM KUMOVA METİN 11

class Person {

public :

 void setAge (unsigned n) {

 age = n;

 };

 unsigned getAge() const {

 return age;

 };

private:

 unsigned age;

};

Person & func3(){

 Person p;

 p.setAge(4);

 return p;

}

unsigned func4(Person & y){ // Call by reference

 y.setAge(3);

 return y.getAge();

}

OUTPUT
???

main() {

 Person x;

 cout << x.getAge() << endl;

 x = func3();

 cout << x.getAge() << endl;

 cout << func4(x) << endl;

 cout << x.getAge() << endl;

}

CS116 SENEM KUMOVA METİN 12

class Person {

public :

 void setAge (unsigned n) {

 age = n;

 };

 unsigned getAge() const {

 return age;

 };

private:

 unsigned age;

};

Person & func3(){

 Person p;

 p.setAge(4);

 return p;

}

unsigned func4(Person & y){ // Call by reference

 y.setAge(3);

 return y.getAge();

}

0
4
3
3

main() {

 Person x;

 cout << x.getAge() << endl;

 x = func3();

 cout << x.getAge() << endl;

 cout << func4(x) << endl;

 cout << x.getAge() << endl;

}

CS116 SENEM KUMOVA METİN 13

class Person {

public :

 void setAge (unsigned n) {

 age = n;

 };

 unsigned getAge() const {

 return age;

 };

private:

 unsigned age;

};

void func(Person * ptr){

 ptr->setAge(5);

 cout << ptr->getAge() << endl;

}

Accessing to an object’s members through a pointer requires class indirection operator
“->”

OUTPUT
???

void main() {

 Person x;

 x.setAge(4);

 cout << x.getAge()<< endl;

 func(&x);

 cout << x.getAge() << endl;

}

CS116 SENEM KUMOVA METİN 14

class Time {

public:
 void setTime(int h, int m) {hour = h; minute = m;}; // OK.

 void printUniversal() const {hour = 12; }; //??????

 void printStandard() const;

private:
 int hour;
 int minute;

};

const objects and const member functions
prevent modifications of objects and enforce the principle of least privilege.

The keyword const in methods printUniversal and printStandard shows that

unlike method SetTime, these methods can not change the value of any Time
data member.

CS116 SENEM KUMOVA METİN 15

class Time {

public:

 void setTime(const int &m, const int &h) { minute=m; hour=h;};

 const int & getHour() { return hour;};

private:

 int hour;

 int minute;

};

main(){

 int a = 16, b = 15;

 const int &x = 0; // Intialization is OK !

 Time obj;

 // setTime() cannot change the value of a or b of main()

 obj.setTime(a, b) ;

 // main() cannot change the return value of getHour()

 x = obj.getHour();

}

CS116 SENEM KUMOVA METİN 16

 A special method that initializes class members.

 Same name as the class.

 No return type (not even void).

 Member variables can be initialized by the constructor

or set afterwards

 Normally, constructors are declared public.

 C++ requires a constructor call for each object that is

created, which helps ensure that each object is

initialized before it’s used in a program.

 The constructor call occurs implicitly when the object

is created.

 If a class does not explicitly include a constructor, the

compiler provides a default constructor—that is, a

constructor with no parameters .

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 A class gets a default constructor in one of two ways:

◦ The compiler implicitly creates a default constructor in a

class that does not define a constructor.
◦ You explicitly define a constructor that takes no arguments.

 If you define a constructor with arguments, C++ will
not implicitly create a default constructor for that class.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

CS116 SENEM KUMOVA METİN 19

class Person {

 public :

 // Constructor

 Person() { age = 0; name =“Unknown”; }

 void setAge (unsigned n) { age = n };

 unsigned getAge() const { return age };

 void getName() const { cout <<name<<endl; }

 private:

 unsigned age;

 string name;

 };

void main()

{

 Person p;

 cout << p.getAge()<<endl;

 cout << p.getName()<<endl;

}

CS116 SENEM KUMOVA METİN 20

class Person {

 public :

 Person(); // Constructor

 void setAge (unsigned n) { age =n };

 unsigned getAge() const { return age };

 void getName() const { cout << name << endl; }

 private:

 unsigned age;

 string name;

};

Person ::Person() {

 age = 0;

 name = “Unknown”;

}

void main()

{

 Person p;

 cout <<p.getAge()<<endl;

 cout <<p.getName()<<endl;

}

CS116 SENEM KUMOVA METİN 21

class Person {
public :

 Person() { age = 0; name = “Unknown”; } // First Constructor
 Person(string n) { name = n; } // Second Constructor

 void setAge (unsigned n) { age = n };
 unsigned getAge() const { return age };
 void getName() const { cout <<name<<endl; }

private:
 unsigned age;
 string name;
};

void main()
{
 Person q; // USING FIRST CONSTRUCTOR
 cout << q.getAge() << endl;
 cout << q.getName()<< endl

 Person p(“John”); // USING SECOND CONSTRUCTOR
 cout << p.getAge() << endl;
 cout << p.getName()<< endl;
}

CS116 SENEM KUMOVA METİN 22

 A constructor is automatically invoked whenever an object is

created

 A destructor is automatically invoked whenever an object is

destroyed

 A destructor takes no arguments and no return type, there can

be only one destructor per class

class C

{

 public :

 C() { … }; // constructor

 ~C() { … }; // destructor

 …

}

CS116 SENEM KUMOVA METİN 23

class C {

public :

 C(){name=“anonymous”;}

 C(const char * n) { name=n;}

 ~C() { cout <<“destructing” <<name<<“\n”;}

private:

 string name;

};

int main(){

 C c0(“John”);

 { // entering scope....

 C c1;

 C c2;

 } // exiting scope. destructors for c1 and c2 are called

 C * ptr = new C();

 delete ptr; // destructor for ptr object is called

 return 0; // destructor for c0 is called

}

CS116 SENEM KUMOVA METİN 24

class Person {

public :

 Person() {name =“Unknown”; };

 Person(cons string & n) ;

 Person(cons char * n);

 void getName() const { cout << name; }

private:

 string name;

};

Person :: Person(const string & n) {

 name = n;

 cout <<“Creating objects with string!!\n”;

}

Person :: Person(const char * n) {

 name = n;

 cout <<“Creating objects with char *!!\n”;

}

void main() {

 Person p;

 p.getName();

 Person p1(“NOT IMPORTANT”); // char * string s1(“VERY IMPORTANT”)

 Person p2(s1);

}

CS116 SENEM KUMOVA METİN 25

class Emp {

public :

 Emp(unsigned ID) { id=ID;}

 unsigned id;

private:

 Emp();

};

void main() {

 Emp orhan; //IS IT POSSIBLE??

 Emp ferdi(111222333); //IS IT POSSIBLE??

}

If a class explicitly declares any constructor, the compiler does not provide a public

default constructor.

If a class declares a Non-public default constructor, compiler does not provide a

public default constructor.

CS116 SENEM KUMOVA METİN 26

class Emp {

public :

 Emp(unsigned ID) { id=ID;}

 unsigned id;

private:

 Emp();

};

void main() {

 Emp orhan; //IS IT POSSIBLE?? NO

 Emp ferdi(111222333); //IS IT POSSIBLE?? YES
}

 The assignment operator (=) can be used to assign an object
to another object of the same type.

 By default, such assignment is performed by memberwise
assignment
◦ Each data member of the object on the right of the assignment

operator is assigned individually to the same data member in the
object on the left of the assignment operator.

 [Caution: Memberwise assignment can cause serious
problems when used with a class whose data members
contain pointers to dynamically allocated memory]

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

 Objects may be passed as function arguments and may be
returned from functions.

 Such passing and returning is performed using pass-by-
value by default—a copy of the object is passed or returned.

◦ C++ creates a new object and uses a copy constructor to copy the
original object’s values into the new object.

 For each class, the compiler provides a default copy
constructor that copies each member of the original object
into the corresponding member of the new object.

◦ Copy constructors can cause serious problems when used with a
class whose data members contain pointers to dynamically allocated
memory.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

CS116 SENEM KUMOVA METİN 29

 A copy constructor creates a new object as a copy to another object
 Copy constructor for Person class  Person(Person &);

class Person {

public :

 Person(const string & , const unsigned) ;

 string name;

 unsigned age;

};

Person :: Person(const string & n, const unsigned a) {

 cout << " Calling constructor with "<< n << "," << a << endl;

 name=n;

 age=a;

}

main(){

 string s1("Bob");

 Person p1(s1,15);

 Person p2(p1); // which constructor works?????

 cout << p2.name;

}

CS116 SENEM KUMOVA METİN 30

class Person {

public :

 Person(const string & , const unsigned) { name=n; age=a;}

 Person(Person & x, const unsigned);

 string name;

 unsigned age;

};

Person :: Person(Person & x, const unsigned y = 0) {

 cout << "Calling Copy Constructor" << y ;

 name=x.name; age=y;

}

main(){

 string s1("Bob");

 Person p1(s1,15);

 Person p2(p1); // which constructor works?????

}

Copy constructor may have more than one parameter but all

parameters beyond the first must have default values.

CS116 SENEM KUMOVA METİN 31

Used to convert a non-C type such as an int or string to a C
object

class Person {

 public :

 Person() {name =“Unknown”; }

 Person(const string & n) { name = n;}

 Person(const char * n) { name = n; } // called

private:

 string name;

};

void main() {

 Person p1(“John”);

 // converts a string constant to a Person object

}

CS116 SENEM KUMOVA METİN 32

class C {

 public : C();

 private: C(C &); // Copy Constructor

};

void f(C); // call by value

C g() {

 C obj;

 return obj; // return by value

}

main() {

 C c1, c2;

 f(c1); // NOT POSSIBLE

 c2=g(); // NOT POSSIBLE

}

If the copy constructor is private top-level functions and methods in
other classes cannot pass or return class objects by value because
this requires a call to copy constructor!!!

CS116 SENEM KUMOVA METİN 33

class

C {

public :

 C() { x=0; y=0;} // cannot change the value of const y

private:

 int x;

 const int y; // const data member

};

// WE HAVE TO USE CONSTRUCTOR INITIALIZER to INITIALIZE A

// const DATA MEMBER!!!

class C {

public :

 C() : y(0) { x=0; } // or C() : y(0), x(0){ }

private:

 int x;

 const int y; // const data member

 };

CS116 SENEM KUMOVA METİN 34

class Emp {

public :

 Emp() {cout << "calling default constructor";};

 Emp(const char * name) {n = name;}

 string n;

};

int main()

{

 int *x = new int;

 // default constructor initializes

 Emp *orhan = new Emp();

 // second constructor initializes

 Emp *ferdi = new Emp(“Ferdi”);

 // default constructor initializes

 Emp *lots_of_people = new Emp[1000];
 // NO constructor initializes

 Emp *foo = (Employee *) malloc(sizeof(Emp));

}

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

 In certain cases, only one copy of a variable should be

shared by all objects of a class.

 A static data member is used for these and other

reasons. static keyword is used.

 Such a variable represents “class-wide” information.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

class C {

 int x;

 static int s;

};

C c1, c2, c3;

x x x

 c1 c2 c3

C::s

CS116 SENEM KUMOVA METİN 37

 A static member does not effect the size of a class or an object
of this class type.

 A static data member may be declared inside a class
declaration but must be defined outside.

 A class’s static members exist even when no objects of that
class exist.

class Task {

public:

 …

private:

 static unsigned n; // declaration

 static const int id = 0; // const is required if

 initialized

};

unsigned Task::n=0; // definition

 Although they may seem like global variables, a class’s static data
members have class scope.

 static members can be declared public, private or
protected.

 A fundamental-type static data member is initialized by default to
0.

 If you want a different initial value, a static data member can be
initialized once.

 A static const data member of int or enum type can be
initialized in its declaration in the class definition.

 All other static data members must be defined at global namespace
scope and can be initialized only in those definitions.

 If a static data member is an object of a class that provides a default
constructor, the static data member need not be initialized because
its default constructor will be called.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

CS116 SENEM KUMOVA METİN 39

A static method can access only other static members

class Task{

public:

 static unsigned getN() {return n;}

 static int getK() const {return k;} //NOT POSSIBLE!!!

private:

 static unsigned n;

 int k;

};

CS116 SENEM KUMOVA METİN 40

To access a public static class member when no objects of the
class exist, prefix the class name and the binary scope resolution
operator (::) to the name of the data member.

CS116 SENEM KUMOVA METİN 41

class Task {

public:

 static unsigned getN() const {return n;}

 static unsigned n;

};

unsigned Task::n=5;

int main() {

 Task c1, c2;

 c1.getN(); // access through an object. c1 exists.

 Task::getN(); // access through class (direct access)

 unsigned x = c1.n; // access through an object

 unsigned y = c2.n; // access through an object

 unsigned z= Task::n; // access through class(direct access)

}

CS116 SENEM KUMOVA METİN 42

class Task {

public:

 static unsigned getN() const {return n;}

private:

 static unsigned n;

};

unsigned Task::n=5;

int main() {

 unsigned z= Task::n; // ERROR !!! n is private

 // access through class (direct access

 unsigned z = Task::getN();

}

To access a private or protected static class member when no

objects of the class exist, provide a public static member function

and call the function by prefixing its name with the class name and

binary scope resolution operator.

CS116 SENEM KUMOVA METİN 43

class C {

 public : void m();

 private : int x;

};

void C::m() {

 static int s = 0; // one copy for all objects!!

 cout << ++s << ‘\n’

}

int main(){

 C c1,c2,c3;

 c1.m(); // 1

 c2.m(); // 2

 c3.m(); // 3

 return 0;

}

 People new to object-oriented programming often

suppose that objects must be quite large because they

contain data members and member functions.

 Logically, this is true—you may think of objects as

containing data and functions (and our discussion has

certainly encouraged this view); physically, however,

this is not true.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

sizeof an object

CS116 SENEM KUMOVA METİN 46

class C {

public :

 C() {x = 0;}

private:

 int x;

};

IS SAME WITH

class C {

public :

 C() {this->x = 0;}

private:

 int x;

};

this pointer

• an implicit argument to each of a class’s

non-static member functions.

• allows those member functions to access

the correct object’s data members and

other non-static member functions.

CS116 SENEM KUMOVA METİN 47

class Person {

public :

 Person(string & name) {

 this->name = name; // name = name does NOT

work

 name=“Mary”; // name is input parameter

 }

 string getName(){ return name;}

 private:

 string name; // = this->name

};

void main() {

 string n(“Joe”);

 Person p(n);

 cout << n << “ “ << p.getName();

}

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

 A friend function of a class is defined outside that

class’s scope, yet has the right to access the non-

public (and public) members of the class.

 Standalone functions, entire classes or member

functions of other classes may be declared to be friends

of another class.

 Using friend functions can enhance performance.

 Friendship is granted, not taken.

 The friendship relation is neither symmetric nor

transitive.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc.
All Rights Reserved.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

