

Take Home Exam 3 Line Integral of Complex Functions

- **Q1.** Find and sketch the following paths.
 - (i) (3+i)t $(1 \le t \le 2)$

(iii)
$$1 + i + 4e^{it}$$
 $(0 \le t \le 2\pi)$

(ii) 2 + i + (1 - i)t $(0 \le t \le 2)$

Q2. Find a parametric representation of the following paths and sketch them.

- (i) Line segment from (0,-1) to (2,1).
- (iii) Ellipse $x^2 + 4y^2 = 16$, counterclockwise

(ii) Unit circle, clockwise

$$\int_C Re \, z \, dz$$

over the paths defined below.

- (i) C: The shortest path from 1 + i to 1 + 4i.
- (ii) C: The parabola $y = x^2$ from 1 + i to 1 + 4i.
- **Q4.** Express f(z) in terms of partial fractions and integrate it over the circle |z| = 2 (counterclockwise) where
 - (i) $f(z) = \frac{2z+1+i}{z^2+1}$ (iii) $f(z) = \frac{4z+1}{z^2+9}$

(ii)
$$f(z) = \frac{z+i}{z^2+4z}$$

Q5. Calculate the following integral

$$\oint_C \left(\frac{2z+4-i}{(z-i)^2}\right) dz$$

over the closed path C defined as C: The circle |z - i| = 1, clockwise

Bonus. Integrate

$$\oint_C \frac{e^z}{z \left(z-1-i\right)} dz$$

where the contour C consists of the circle |z| = 2 (C₁) counterclockwise and the circle |z| = 1 (C₂) clockwise. (C₁ and C₁ constitute the boundary for the ring-shaped domain)

