

Take Home Exam 4Linear System of Equations and Matrices

Q1. Let

A =	3 2 4	$ \begin{array}{c} 1 \\ -3 \\ 0 \end{array} $	4 3, 2	$\boldsymbol{B} = \begin{bmatrix} 2\\0\\3 \end{bmatrix}$	3 4 1	$\begin{bmatrix} -1\\ 3\\ 1 \end{bmatrix}$,	$C = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1\\ 3\\ -2 \end{bmatrix}$,	$\boldsymbol{D} = \begin{bmatrix} 4 \\ -2 \\ 3 \end{bmatrix}, \boldsymbol{E} =$	$\begin{bmatrix} 3\\2\\-1 \end{bmatrix}$
	LŦ	0	21	LJ	-1	TJ	LU	-21		[-1]

Find the following expressions or give reasons why they are not defined.

(i)	A + B	(iv)	D + E
(ii)	A + C	(v)	\boldsymbol{A}^{T}
(iii)	A + D	(vi)	\boldsymbol{D}^T

Q2. Let the matrices *A*, *B*, *C*, *D* and *E* are as given in *Q1*. Find the following expressions or give reasons why they are not defined.

(i)	A B	(iv)	DA
(ii)	A C	(v)	A E
(iii)	C A	(vi)	$\boldsymbol{D}^T \boldsymbol{E}$

Q3. (a) **Idempotent matrix**, defined by $A^2 = A$. Can you find two 2x2 idempotents matrices? Verify your suggestion. What is the property of an idempotents matrix?

(b) **Nilpotent matrix**, defined by $A^m = 0$ for some *A*. Can you find two 2x2 nilpotent matrices? Verify your suggestion. What is the property of a nilpotents matrix??

- (c) Let **A** be the matrix as given in **Q1**.
 - (i) Show that $S = A + A^T$ is symmetric.
 - (ii) Show that $T = A A^T$ is skew-symmetric.
 - (iii) Show that *A* can be expressed as the sum of symmetric and skew-symmetric components $A = \frac{1}{2}(S + T)$
- **Q4.** Consider the linear system of equations given below. For each part, obtain the corresponding augmented matrix and solve the unknowns by Gauss Elimination method. Which system has (a) exactly a single solution, (b) multiple solutions or (c) no solution?
 - (i) $4x_1 6x_2 = -14$ $3x_1 + 8x_2 = 2$ (ii) $4x_1 + 6x_2 = 10$ $2x_1 + 3x_2 = 5$ (ii) $4x_1 + 6x_2 = 12$ $2x_1 + 3x_2 = 5$ (iv) $3x_1 + x_2 + x_3 = 9$ $x_1 - 3x_2 - 2x_3 = 5$ $-x_1 + x_2 - 2x_3 = -9$