

EXPERIMENT 1

PSPICE Simulations of Common Source Stage Characteristics

A. Background

Download, print and read the tutorial on the usage of ORCAD/PSPICE available at http://homes.ieu.edu.tr/~maskar/EEE331/General/ORCAD-PSPICE-Tutorial.pdf

B. Experimental Work

Part 1: Common Source Amplifier- Dc Analysis

1. Construct the given circuit below (Fig. 1.1) in ORCAD by following the steps.

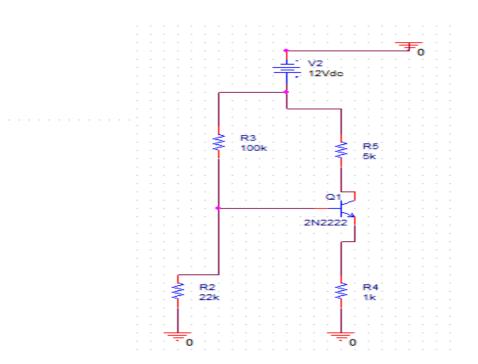


Fig. 1.1

Select File >> New >> Project. Name your project (Fig. 1.2) as "Common_Source_Amplifier_NAME_SURNAME". <u>Asthelocationfield</u>, select the directory as "D:\MYWORKS\EEE331_ORCAD". Be sure that you selected "Analog or Mixed A/D".

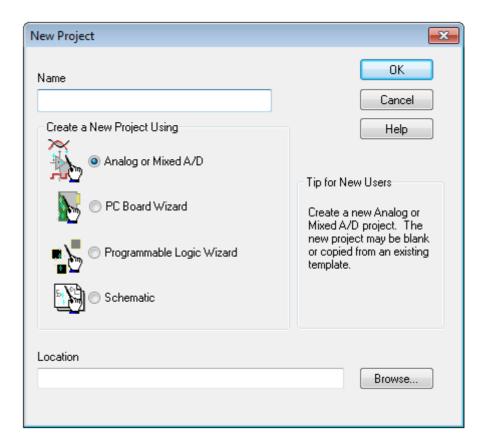


Fig. 1.2

3. Now, select "Create a blank project" at the appeared diagram box (Fig. 1.43).

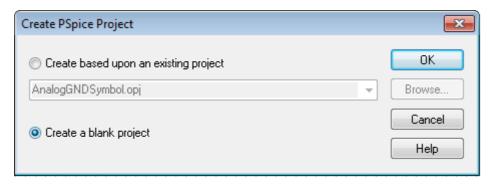


Fig. 1.3

- 4. Add a sinusoidal voltage source (VSIN) and a resistor(R) to your circuit as described in the *ORCAD/PSPICE Tutoria*l. To work your circuit properly, don't forget to add **Ground** to your circuit.
- 5. Set the parameters as shown in Fig. 1.4. (Your laboratory work parameters will be assigned to you during the Laboratory Work

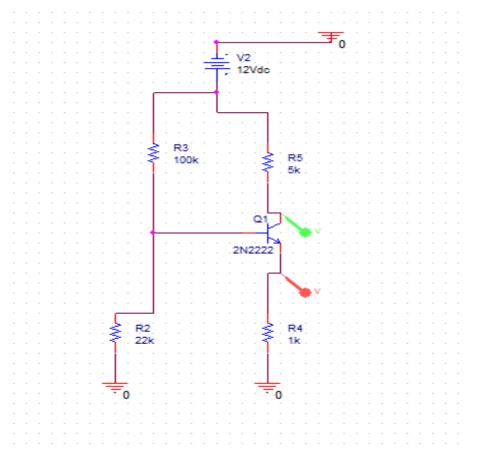


Fig. 1.4

6. After the construction of circuit, create a new profile using Pspice >> New Simulation Profile from toolbar (Fig. 1.5). Write "Common_Source_Amplifier_NAME_SURNAME" for New Simulation Name.

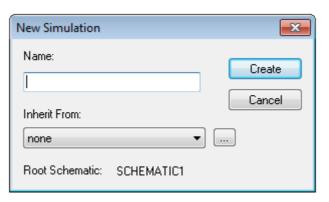


Fig. 1.5

7. Set the simulation settings as given in Fig. 1.6

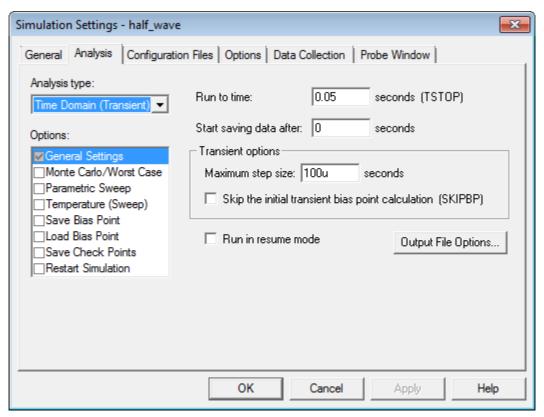


Fig. 1.6

8. Run your program by using toolbar as **Pspice** >> **Run**.

Prepare a lab report based on the following format.

Insert your circuit schematic and simulation results below (The capture method is given in *ORCAD/PSPICE Tutorial*.

Report: Part 1 - Common Source Amplifier- Dc Analysis

i.	Circuit Schematic	
		Insert Your Circuit Schematic Here
ii.	Simulation Results	
	I	nsert Your Simulation Results Here
iii.	Discussions	

C.2. Part 2: Common Source Amplifier

1. Add a sinusoidal voltage source (VSIN) of 10 mV at 1 kHz, a 10uF capacitor and a 1k resistor(R) to your circuit as shown in Fig. 1.7

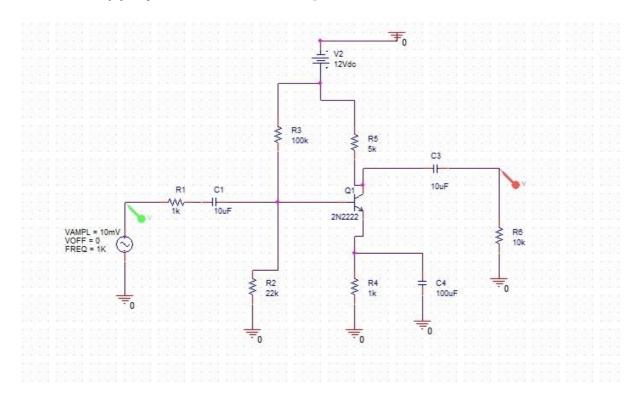


Fig. 1.7

2. ***** Can you observe the ripples at the output? How do they change with different capacitance values? Discuss this issue in the Discussions box.

Prepare a lab report based on the following format.

C.3. Report: Part 2 - Common Source Amplifier

Insert your circuit schematic and simulation results below.

i.	Circuit Schematic
	Insert Your Circuit Schematic Here
ii.	Simulation Results
	Insert Your Simulation Results Here
iii.	Discussions

kHz)	
	Insert Your Circuit Schematic Here
v.	Simulation Results (Common Source Amplifier with sinusoidal voltage source (VSIN) of 20 at 1kHz)
	Insert Your Simulation Results Here
vi.	Discussions (Common Source Amplifier with sinusoidal voltage source (VSIN) of 20 mV at 1kHz)