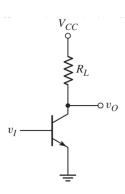

LO-4

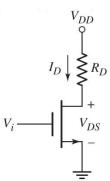
To Do the Analysis and Design of Power Amplifiers

1. Consider the common-emitter circuit given in the figure. The circuit parameters are:

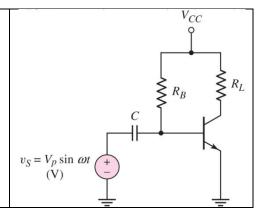
$$V_{CC}$$
 = 24 V, R_L = 8 Ω.

- (a) Determine the maximum current and voltage limits of the BJT transistor.
- (b) For which value of R_L , the power dissipation over transistor is maximum? What is the maximum power dissipation then?



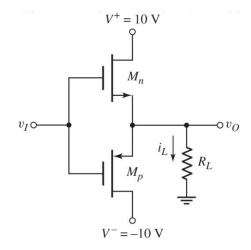

$$V_{DD} = 10 \text{ V}$$
, $R_D = 5 \text{ k}\Omega$.

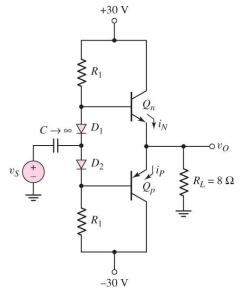
and the transistor parameters are:


$$V_{TN} = 1 \text{ V}$$
, $K_n = 1 \text{ mA/V}^2$, and $\lambda = 0$.

Assume the output voltage is limited to the range between the SAT-LIN transition point and $v_{DS} = 0.9 \ V_{DD}$ to minimize the nonlinear distortion. Calculate the actual efficiency of this Class A output stage.

- 3. The maximum current, voltage and power ratings of the power BJT transistor used in the circuit of Q2 are 5 A, 80 V and 25 W respectively. Determine the value of R_D that produces a maximum power in the transistor for (i) $V_{DD} = 80$ V and (ii) $V_{DD} = 50$ V.
- 4. The common-emitter circuit in the figure is biased at V_{CC} = 24 V. The maximum transistor power is $P_{D,max}$ = 20 W and the current gain β = 80.
 - (a) Determine R_L and R_B such that the maximum power is delivered to the load.
 - (b) Find the value of V_P for the input signal that delivers the signal power. Sate any assumption.

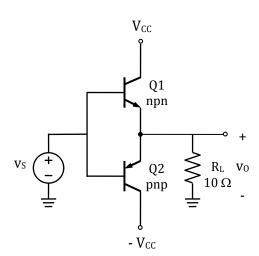



5. Consider the Class-B output stage with complementary MOSFETs shown in the figure. The transistor parameters are:

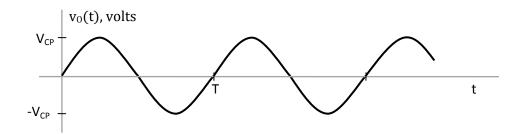
$$V_{TN} = V_{TP} = 0$$
. $K_n = K_p = 0.4 \text{ mA/V}^2$.

Let $R_L = 5 \text{ k}\Omega$.

- (a) Find the maximum output voltage such that M_n remains biased in the saturation region. What are the corresponding values of i_L and v_I for this condition
- (b) Determine the conversion efficiency for a symmetrical sine-wave output signal with peak value found in part (a).
- 6. Consider the class-AB stage in the figure. The diodes and the transistors are matched with parameters $I_S = 6 \times 10^{-12}$ A, and $\beta = 40$.
 - (a) Determine R_I such that the minimum current in the diodes is 25 mA when $v_O = 24$ V. Find i_N and i_P for this condition.
 - (b) Using the results of part (a), determine the diode and the transistor currents when $v_0 = 0$.

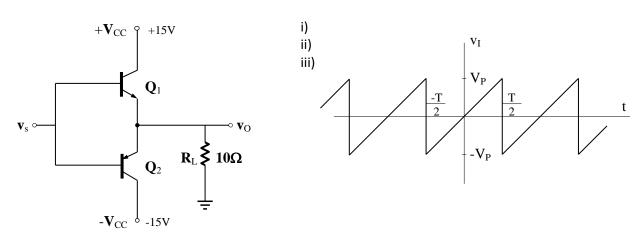


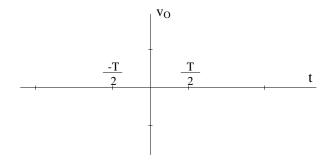
7. Consider the Class B output stage shown in the figure (V_{CC} = 12 V). Assume the transistors are ideal with


$$V_{BE1} = V_{EB2} = 0 V$$

 $V_{CEsat1} = V_{ECsat2} = 0 V$.

The input is a sinusoidal waveform as well as the output as given below.


- i) Determine the average power dissipation over the load as a function of V_{CP} .
- ii) Determine the total average power drawn from the sources as a function of V_{CP} .
- iii) The average power dissipation over one transistor as a function of V_{CP} .
- iv) Determine the power conversion efficiency as a function of V_{CP} .



- v) What is the power efficiency when $V_{CP} = 6 \text{ V}$.
- vi) For which value of V_{CP} , the power efficiency is maximum? What is the maximum power efficiency then?
- vii) For which value of V_{CP} , the power dissipation over any transistor is maximum? What is the maximum power over any transistor then?
- 8. Consider the power amplifier shown in the figure.

i) Assume the transistors are ideal with $V_{BE1}=V_{EB2}=0$ V and $V_{CEsat1}=V_{ECsat2}=0$, for the input voltage v_I given above, plot the output waveform. (Assume $V_P < V_{CC}$)

- ii) Determine the average power dissipation over the load as a function of V.
- iii) The total average power drawn from the sources as a function of V.
- iv) The average power dissipation over one transistor as a function of V.
- v) Determine the power conversion efficiency as a function of V.
- vi) For which value of V, the power efficiency is maximum? What is the maximum power efficiency then?
- **vii)** For which value of V, the power dissipation over each transistor is maximum? What is the maximum power dissipation over any transistor then?