

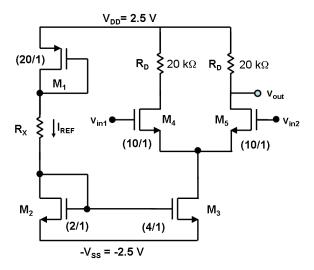
LO-7

To Do The Analysis and Design of Differential Amplifiers

- **1.** For the given circuit; $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $R_{SS} = 220 \text{ k}\Omega$, $R_D = 330 \text{ k}\Omega$, $\mu_n C_{ox}(W/L) = 0.4 \text{ mA/V}^2$, $V_{TN} = 1 \text{ V}$
 - a) Find the DC drain current (I_D) and the small signal parameter g_m of the Q_1 transistor.
 - b) Find the differential-mode gain.
 - c) Find the common-mode gain.
 - d) Find CMRR
 - e) If $\mathbf{v}_1 = 0.1 \sin(2\pi^*60t) + 0.005 \sin(2\pi^*1000t)$, $\mathbf{v}_2 = 0.1 \sin(2\pi^*60t) 0.005 \sin(2\pi^*1000t)$ volts, then find \mathbf{v}_0 .

2. Consider the differential amplifier given in the figure below.

$$\begin{split} V_{DD} &= 2.5 \text{ V, } V_{SS} = 2.5 \text{ V, } R_D = 20 \text{ k}\Omega, \\ (W/L)_1 &= 20/1, (W/L)_2 = 2/1, (W/L)_3 = 4/1, \\ (W/L)_4 &= (W/L)_5 = 10/1, \end{split}$$

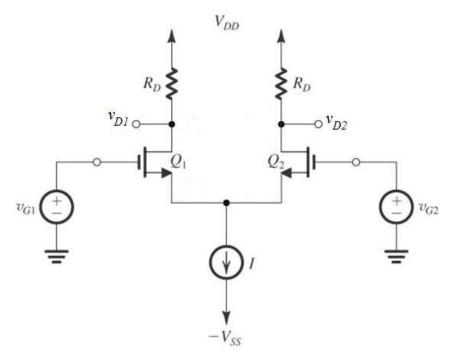

For all nMOS transistors:

$$K_{n}$$
 = 50 $\mu A/V^{2}$, V_{tn} = 1 V, λ = 0.01 $V^{\text{-}1}$

For all pMOS transistors:

$$K_p$$
 = 25 $\mu A/V^2$, V_{tp} = -1 V, λ = 0.01 V^{-1}

Assume that all MOS transistors are in <u>SAT</u>.

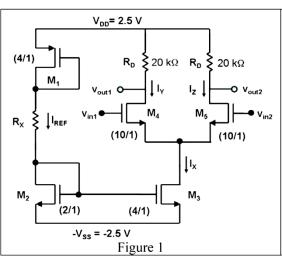


a) Determine the value of R_X to set I_{REF} = 100 μ A. Determine the drain current values for transistors M_4 and M_5 .

For the rest of the problem, assume that $I_{REF} = 100 \mu A$

- b) Find the single-ended output differential gain Ad
- c) Find the single-ended output common-mode gain Ac.
- d) Find the Common-Mode Rejection Ratio (CMRR) for both single-ended output and differential output cases.
- e) Find the common-mode input range (*Maximum* and *Minimum* common-mode input voltages for proper operation) for this amplifier.

- **3.** Consider the following differential pair. A design error has resulted in a gross mismatch in the W/L ratios, i.e., Q_2 has twice the W/L ratio of Q_1 ; i.e., $(W/L)_2 = 2 (W/L)_1$
 - (a) Determine the dc drain currents I_{D1} and I_{D2} in terms of the biasing current source I.
 - (b) Calculate the overdrive voltages $V_{ov} = V_{GS} V_t$ and transconductances g_{m1} , g_{m2} for each of Q_1 and Q_2 in terms of I and transistor parameters.
 - (c) Draw the small-signal model of the differential amplifier circuit.
 - (d) Determine the differential gain $A_d = (v_{d2}-v_{d1})/v_{id}$ in terms of R_D and transconductances of the transistors.
 - (e) What is the input-referred dc offset voltage V_{os} of this amplifier?

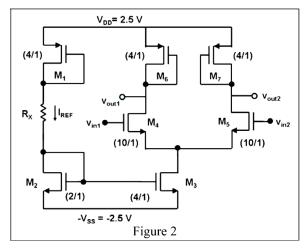


- **4.** For the circuit given in Figure 1,
 - a) Find the value of R_X to set I_{REF} =0.1mA.
 - b) Determine the values of I_{x} , I_{y} , and I_{z} currents.
 - **c)** Draw the differential and common-mode half circuits.
 - d) Find the differential voltage gain

A_d =
$$(v_{out1} - v_{out2})/(v_{in1} - v_{in2})$$
)
and the **common-mode** voltage gain
$$(A_{cm} = v_{out1}/v_{cm}).$$

- (A_{cm}=v_{out1}/v_{cm}).

 e) Find the Common-Mode-Rejection-Ratio
 (CMRR) for both single-ended and differential output case.
- f) Determine the input offset voltage for 1% mismatch in the load resistances (R_n) .
- g) Determine the CMRR for 1% mismatch in the load resistances (R_s).


Transistor Parameters:

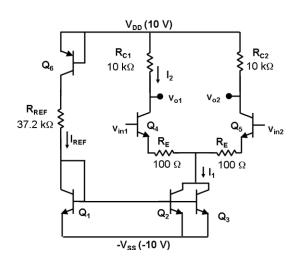
$$\begin{split} &K_{n}{'}{=}100~\mu\text{A/V}^{^{2}},~K_{p}{'}{=}50~\mu\text{A/V}^{^{2}},\\ &V_{TN}{=}1\text{V},~V_{TP}{=}{-}1\text{V},~\text{and}~\lambda_{n}{=}\lambda_{p}{=}0.02~\text{V}^{^{-1}}. \end{split}$$

- **5.** For the circuit given in Figure 2,
 - a) Find the differential mode voltage gain.
 - b) Determine the **common mode voltage** gain.
 - c) If $\mathbf{v_{in1}} = 0.1 \sin(2\pi^*60t) + 0.005 \sin(2\pi^*1000t)$,

$$\mathbf{v_{in2}} = 0.1 \sin (2\pi^*60t) - 0.005 \sin(2\pi^*1000t) \text{ volts,}$$

then find v_{out1} and v_{out2} .

Transistor Parameters:


$$K_n'=100~\mu A/V^2$$
, $K_p'=50~\mu A/V^2$, $V_{TN}=1V$, $V_{Tp}=-1V$, and $\lambda_n=\lambda_p=0.02~V^{-1}$.

6. This problem deals with the differential amplifier shown on the figure given on the right.

Assume that all transistors are in <u>forward</u> <u>active region</u>.

Assume also that the input signals (v_{in1} and v_{in2}) have zero <u>DC</u> voltage components.

- a) Find the values of I_{REF} , I_1 , and I_2 .
- b) Draw the **differential** and **common-mode** *small-signal* half circuits for the amplifier.
- c) Find the **differential gain** of the amplifier $\left(\frac{v_{o1} v_{o2}}{v_{in1} v_{in2}}\right)$.
- d) Find the **common-mode gain** of the amplifier <u>for both single-ended and differential output cases</u>.
- e) Find the **common-mode rejection ratio (CMRR)** of this amplifier <u>in dB for both single-ended and differential output cases</u>.
- f) Assume that there is a mismatch between R_{C1} and R_{C2} , and due to this mismatch R_{C1} =10 k Ω and R_{C2} =10.1 k Ω . What is the CMRR for this mismatch?

Transistor Parameters

 $\begin{array}{lll} \textbf{Q_4 and Q_5:} & \textbf{V_A} = \infty \\ \textbf{Q_1, Q_2, Q_3, and Q_6:} & \textbf{V_A} = 100 \text{ V} \\ \textbf{Q_1, Q_2, Q_3, Q_4, and Q_5:} & \textbf{V}_{BE(on)} = 0.7 \text{V} \\ \textbf{Q_6:} & \textbf{V}_{EB(on)} = 0.7 \text{V} \\ \textbf{Q_1, Q_2, and Q_3} \text{ are identical.} \\ \textbf{Q_4 and Q_5} \text{ are identical.} \\ \textbf{V_T=25mV @ } 300 \text{K} \end{array}$