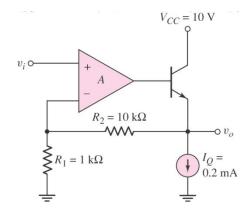


LO-8

To Do the Analysis and Design of Feedback Amplifiers

1. Consider the feedback amplifier given below


$$A_{\rm MB}=10^4$$

$$\omega_{\rm H}=10^4~{\rm rad/sec}$$

$$R_i=100~{\rm k}\Omega$$

$$R_o=100~\Omega$$

$$\beta=0.01$$

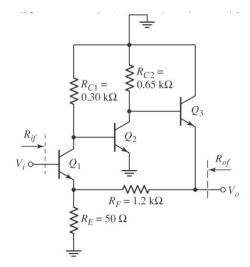
- a) Identify the type of feedback,
- b) Derive the expressions for the closed loop gain $A_{vf} = v_o/v_s$, R_{if} and R_{of} .
- c) Comment on the effect of feedback on the input and output resistances.
- d) Derive the closed loop voltage gain $G_v(j\omega)$ and determine the bandwith, assuming β =0.01, independent of frequency, and

$$A_{v}(j\omega) = \frac{A_{MB}}{1 + \frac{j\omega}{\omega_{H}}}$$

- e) Find and compare the gain-bandwith products of the basic amplifier and the feedback amplifier.
- 2. Considere the feedback amplifier given in Q1. The negative-feedback amplifier has a closed-loop gain of $A_{vf} = 100$ and an open-loop gain $A_v = 10^5$. If a manufacturing error results in a reduction of A_v to 10³, what closed-loop gain results? What is the percentage change in A_{vf} corresponding to this factor of 100 reduction in A_v ?
- 3. Consider the voltage amplifier given in the figure. The op-amp parameters are:

$$A_v$$
 = 5 x 10³, R_i = 10 k Ω , and R_o = 1 k Ω .
and the transistor parameters are β = 100 and V_A = 80 V.
Determine A_{vf} = v_o/v_s , R_{if} and R_{of} .

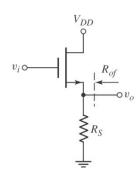
4. The circuit shown on the right is an ac equivalent of circuit of a feedback amplifier.


The transistor parameters are:

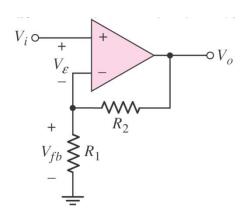
$$\beta$$
 = 100 and V_A = ∞ .

The quiescent collector currents are:

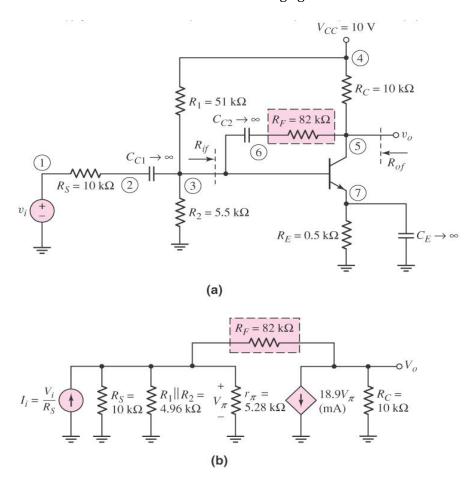
$$I_{C1}$$
 = 14.3 mA, I_{C2} = 4.62 mA, and I_{C3} = 4.47 mA.


- (a) Determine the closed loop voltage gain $A_{vf} = v_o/v_s$
- (b) Determine R_{if} and R_{of} .

5. A basic source follower is given in the figure. Assume the transistor is biased such that $I_{DQ}=0.5$ mA and let $R_S=2$ k Ω . Assume the transistor parameters are:


$$V_{TN} = 1 \text{ V, } \lambda = 0.$$

- (a) If the conduction parameter is $K_n = 0.5$ mA/V², determine $A_{vf} = v_o/v_s$, and R_{of} .
- (b) Determine the percentage change in A_{vf} and R_{of} if the conduction parameter increases to $K_n = 0.8 \text{ mA/V}^2$.


6. Consider the noninverting op-amp in the given figure with R_i = 50 k Ω , R_1 = 10 k Ω , R_2 = 90 k Ω and A_v = 10⁴.

Determine $A_{vf} = v_o/v_i$, R_{if} and R_{of} .

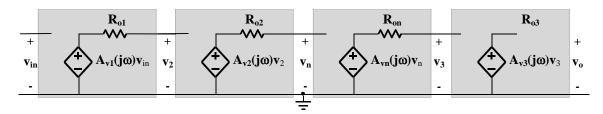
7. Consider the amplifier given below. Tha tarnsistor parameters are $\beta = 100$, $V_{BE(on)} = 0.7$ V, and $V_A = \infty$. Determine the transresistance and voltage gain.

- 8. Determine the voltage gain of the feedback amplifier given in Q7 using Miller's Theorem.
- 9. Consider the following voltage amplifier having 3 stages.

The voltage gain of the stages are given as follows:

$$A_{v_1}(j\omega) = \frac{10}{1 + j(\omega/\omega_1)}; \quad A_{v_2}(j\omega) = \frac{100}{1 + j(\omega/\omega_2)}; \quad A_{v_3}(j\omega) = \frac{100}{1 + j(\omega/\omega_3)};$$

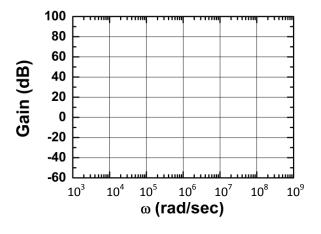
where ω_1 =10⁶ rad/sec, ω_2 =10⁷ rad/sec, ω_3 =10⁹ rad/sec,

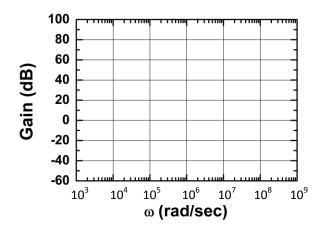

a) Plot the Bode plot of the overall voltage gain

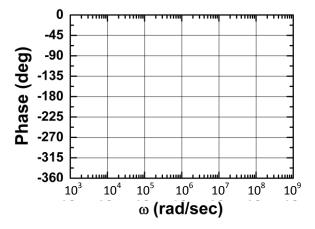
$$A_{v}(j\omega) = \frac{V_{o}(j\omega)}{V_{in}(j\omega)}$$

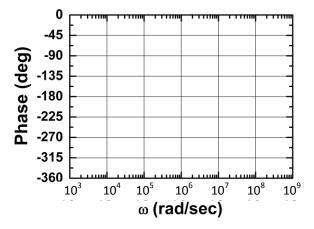
b) Plot the phase of the overall gain as a function of the frequency. [Hint: For $\omega = 10^8$ rad/sec, $\tan -1(\omega/10^7) + \tan -1(\omega/10^9) \cong 90^0$]

- c) If the above amplifier is to be used in a feedback circuit having a constant β =0.1, is the overall amplifier stable? Determine the critical frequency ω_{C} where the amplifier is unstable.
- d) The amplifier is modified by adding a new stage as shown below.




The voltage gain of the new stage is


$$A_{m}(j\omega) = \frac{1 + j(\omega/\omega_{1})}{1 + j(\omega/\omega'_{1})}$$


For ω'_1 =10⁴ rad/sec, is the overall feedback amplifier stable?

a) Determine the phase and gain margins of the feedback amplifier (β =0.1) with this new modified amplifier, graphically. [Hint: log(3.16) = 0.5, tan⁻¹(3.16) = 72⁰]

