

EXPERIMENT 7 MOSFET Current Sources

A. Background

The short circuit connection between gate and drain in the NMOS circuit given in Fig. 7.1 guarantees the condition that NMOS is in SAT region as long as $V_{GS} \ge V_{TN}$.

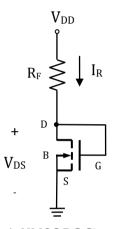


Fig. 7. 1. NMOS DC Circuit

A simple current source may be formed by connecting another NMOS transistor as shown in Fig. 7.2. If the transistors M_R and M_O are matched, then the current I_O through the transistor M_O is equal to I_R . So the change in R_D will not effect the current I_O . However due to Early effect at output characteristics, I_O may be slightly changed as a result of the large changes in R_D .

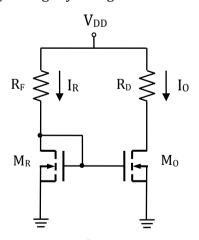


Fig. 7.2. Simple Current Mirror

B. Preliminary Work

a) Consider the NMOS circuit given in Fig. 7.3. Assume $V_{DD} = 12$ V. Determine the value of R_F to set the current $I_R = 1$ mA, using the transistor parameters obtained in Experiment 2.

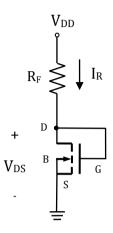


Fig. 7. 3. NMOS Circuit

b) Add M_0 and R_0 to the circuit as given in Fig. 7.3 as shown in Fig. 7.4; to form a simple current mirror to be used as a current source. Assume M_R and M_0 are matched with the same parameters. With $V_{DD} = 12$ V, and the value of R_F as obtained in part (a), and $R_D = 5$ k Ω , determine I_0 and V_{DSO} .

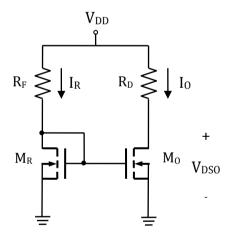


Fig. 7.4. Simple Current Mirror

C. Experimental Work

C.1. NMOS Biasing

1. Set up the circuit given in Fig. 7.5. with V_{DD} = 15 V, R_{F1} = 5.6 k Ω , R_{F2} as a potentiometer of value 50 k Ω .

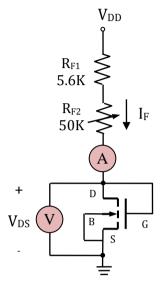


Fig. 7. 5. NMOS Biasing

- 2. Adjust $I_R = 1$ mA and measure $V_{GS} = V_{DS} = \dots V$.
- 3. Calculate $R_{F1} + R_{F2}$. $R_{F1} + R_{F2} = \dots k\Omega$.

C.2. NMOS Simple Current Mirror

4. Set up the circuit given in Fig. 7.6. by modifying Fig. 7.5.

Fig. 7. 6. NMOS Biasing

- 5. Measure I_0 and V_{DSO} . $I_0 = \dots MA$ and $V_{DSO} = \dots V$.
- 6. Repeat Part 5, for $R_0 = 10$ K. $I_0 =$ mA and $V_{DSO} =$ V.
- 7. Comment on the differences between I_0 and I_R .